物理-3,opt8薄膜干涉二等倾条纹_第1页
物理-3,opt8薄膜干涉二等倾条纹_第2页
物理-3,opt8薄膜干涉二等倾条纹_第3页
物理-3,opt8薄膜干涉二等倾条纹_第4页
物理-3,opt8薄膜干涉二等倾条纹_第5页
免费预览已结束,剩余22页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

L=n(AC+CB)-nAD+AB=CB=e/AD=ACsini=2etanr并利用折射定律nsininLL=2necosr+2LL=2en2-n2sin2i+23.条·明·暗

L= (k=L=(2k+1)2(k=·当k一定时,i也一定倾角i相同的光线对应同一条条倾条条纹是以o为中心的同心圆(在透镜焦平面上圆环在透镜光心张的角即为圆环半 r环=ftan (f—焦距条纹分布:内稀外相邻条纹在透镜光心所张的角度差(见教材B版P200)i=ik+1-ik -2n2e可见,i(条纹半径大条纹级

i(条纹间距小·由上式 i=ik+1-ik<中间条纹级次·也可如下分析:明L=2en2-n2 +2e一定k

= i r环即半径越小的条纹,其级次越高看定k级亮纹,光程差为L=2necosr+(/2)=即折r要入射角i也要,条纹半径增大思考:条纹变化“一格膜厚变化多二.条纹的分析(面光源照明 r环 L面光··in>n>e面光源照明时条纹的分由图看·不管从光源哪一点发的光,只要入射角·对于分振幅没有光源宽度和条纹对比度的使用宽光源有好处§9迈克耳逊仪(虽出100多年前但现代仍有许多应用,而且许多现代的仪其结构,·G1分光22 S半透半反21E·M1平面(可动·M2平面镜(固定二.工作原·若M1、M2平等倾

迈克耳孙若M1、M2有小夹角等厚条·观测显微镜E中的视则M1平移d,条纹移过N条,则d=N2

叉等厚迈克耳孙仪 (迈克耳逊仪产生的各种条纹M1,M2相应的位置见有关图仪仪迈克仪产的等倾迈克三.应用光路1中介质n可测折射率nn附加光 =2(n-1) 用迈克耳孙仪测射§10波面多光一.装Pdo焦Pdo焦距

观察多光束装·多缝(N·透·观察屏(在透镜的后焦平面上·单色平行光正入二.光强公用振幅矢量相邻光束的光程光程差Ld相位

=

2)dp点的合·(t)+A0cos(t+A0cos(t+A0cos(t·由振幅矢量图(N=4)(见BNNoRA·合振动的振

振幅矢量2A2Rsin(N),(图中N42 A0=2Rsin(2于A=

sin(N2 )光强

NI=I0 Sin2(2I=I=0sin2 =

d==三.条纹特主极主极大 um):即明条纹位置:明纹条件Ldsin光栅方ddsin=位置

(k=sin0,(/d),2(/d),…当d 当 条纹变A主极大的振幅矢量合振 A=明纹光强INA0)2N2极小(暗纹位置:极小处I要求

2

)=Sin2(

)即暗纹

2

=dsin=(N(kdsin=(N·如N=4,在零级和一级明纹之间可取1,2,3三个极小,分sin L (1/4),(2/4), 分别位于N-1个等分点上(sin坐矢量1212242 1 3次极

极小的振幅矢量I次极大I主极大,(光强可略)两相邻极小间有一个次极大 两邻主极大间有N2个次极大四.光强曲光强曲

N=-

-

多缝的光强曲主极大的半角·主极大的宽度:指主极大两侧最邻近两暗纹间的范围主极大的半角宽:从主极大中心至最近的暗纹间的角距离k级主极

k+1级主极 主极大的半角

·由 dsink=dsin=dsin-dsink=sin(k+k)-sink=kcosk=半角

k Ndcos可见,Ndk多缝的明条22一.基本概

本章小=该条纹相应的

r2-暗条纹的级次是半整数VImax-VImax+Imin:暗纹最暗处光强V的数值在1(对比度好)0(没有对比:空间相干性当光源具有一定的宽度时,在S的波面上多大范围内提取的两衬比度V1)。:相干间隔:条纹刚好时两个波源间的距离d0=b相干孔径:相干间隔对光源中心所0角 =0B相干面积:波面上线度为d0(相干间隔)的最大光程差:条纹第一次完全时所对应的相干光的光程差,

=相干长度:即最大光程差。它等于一波列的长度Lmax==l0

在不同时刻到达光场中某点p,时间相干性此时间差为多大时,在p点能L=二.基本方·利用光的衍射效应:如双缝、多;·利用光的反射效应:如双面镜、·利用光的折射效应:如双棱镜(2)分振幅法:如薄膜(“等厚“等倾”)问题的分析对于各 问题均可按以下思路分析相干光是波程差(光程差)计条纹特点可由光程差结果来分析光强公式、光强曲等厚条纹的分析由膜的等条纹的由膜厚的变化(均匀、不均匀条纹则均匀分的厚度从中心往外由膜厚的改变(变大、变小条纹怎样移由膜的最大厚可数出共有多少条条振幅矢动间的相位差关系,画出矢量关系图·合振动的振幅的平方即该点的光三.重要结双条纹位·明x=k(D) (k=·暗x=

D)光强公

(k=I=4I0cos2(2相干空间相干·源于光源上不同原子发光的独立·光源的极限宽db0=d·相干

d0=b·相干

0=B时间相干·源于光源上原子发光的断续·最大2= =·相干Lmax=·相干=

= 等厚条(1)劈尖薄·明纹e2k1)(k=·暗纹位置e=

(k=·条纹间距ll 2n

(2)·明环半径r=(k·暗环半径

12(2r=k

等倾条·

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论