数学竞赛非数组试题合辑_第1页
数学竞赛非数组试题合辑_第2页
数学竞赛非数组试题合辑_第3页
数学竞赛非数组试题合辑_第4页
数学竞赛非数组试题合辑_第5页
已阅读5页,还剩269页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2017年数学竞赛预赛(非数学类)—1.已知可导函数满足,则ff'(x)cosx+f(x)sinx1,f'(x)+f(x)tanxsecxf(x

tanxdxdxc=elncosx

elncosxdxc=cosx dxc cos =cosxtanxc=sinxccosf(01f(xsinxcosx求limsin2

n2nn2 n2n2nn 1cyv1wxxc2wyy 解 wyc(f2wcffccfcfcfcf=c2f2ff 221wxxc2wyy=4f12

f(sin2=f(xf(0)f'(0)x1f"()x2f(sin2x1f"(sin4x 这样limf(sin2x=limf"()sin4x3 esinxsin5I(1sin解:

dx esinxsinxcos sin (vI

2(1v)2dv

(1 2v1dv2(v1)2dv2v1dv2edv 12v1dv2 v

eve

2esinv1+C1sinx+C 4x26.记曲面z2x2y2和z 围成空间区域为4x2V VI

zdxdydz

0

0 0

2cos2sind。V。21sin2/4142 f(xy在平面上有连续的二阶偏导数.对任何角度g(t)f(tcos,tsin)若对任何

dg(0) d2g且且dg

0.f(0,0f(xy的极小值cos解:由于 fx,fy

0对一切成立,故(f,f (0,0), y (0,0) y(0,0)是f(x,y)的驻点 4记H(x,y)

xy yy d2g(0)d cos dt dt(fx,fy)sin

(cos,sin)Hf(0,0)sin010上式对任何单位向量(cossinHf(0,0)是一个正定阵,f(0,0极小值 14三(本题满分14分 设曲线为x2y2z21,xz1,x0,y0,zA(1,0,0)B(0,0,1)Iydxzdy解:记1BA的直线段,xt,y0,z1t0t 2ydxzdyxdztd(1t 42 设和1围成的平面区域,方向按右手法则.Stokes ydxzdyxdz 1

8右边三个积分都是在各个坐标面上的投影面积,而zx面上投影面积为零.I dydzdxdy1曲线xy(1/(x1/2)2 y(1/(1/

12 2 2

2 .同理2 2这样就有I 2

14 四本题满分15分)设函数f(x0且在实轴上连续,若对任意实数t,有e|tx|f(x)dx1,则ab(abbf(x)dxba2 证.由于ab(ab be|tx|f(x)dxe|tx|f(x)dx aa因 bdtbe|tx|f(x)dxba 4aa b

然 adta f(x)dxa|tf(x)a 其 be|tx|dtxetxdtbextdt2eaxexba

bf(x)(2eaxexb)dxba

10 bf(x)dxba1beaxf(x)dxbexbf(x)dx beaxf(x)dxbe|ax|f(x)dx1,和bf(x)exbdx1 15五(本题满分15分 设{an}为一个数列,p为固定的正整数。 a,其为常数,证明lim

n n 证明:对于i0,1,…,p1, 。由题设limA(i) n limA(i)A(i) A(i) nA(i)A(i)A(i

a(n1) =

a(n1)

10n(n1)p (n1)p 对正整m,设m=npi,其中,p1,从而可以把正整数依照i分为p个子列 a ,故limam 15(n1)pn(n1)p n (êÆ2018䁜3擐 Á磐ª ©¨÷© 铐—峐䭜䱜䱜提绐¿:1.䁜䱜大铐´胐答铐,篐䥜Ê至十大铐¥裐À䭜铐,铐Ò要㑜㥜þ¡擐闐¥(õÀÃ凐2.¤䡜答铐Ñ闐廐糐䅜Áò纸密µ线䩜蟐,廐糐Ù§纸þ-ÆÃ凐 3.密µ线左蟐请Õ答铐,密µ线勐Ø提䡜翐¶苐相烐鋐駐密µ 答铐时Ø要超闐䅜 4.㕜答铐空xØ叐,可廐糐凐页寐¡密µ 答铐时Ø要超闐䅜提µ(20©z5©提µ 惐¢

011

§n≥1§Ù¥I´与

Ó某擐方叐©铐rank(H4) ln(1+tanx)−ln(1+sin(

x=π

惐Γ为空䩜­ y=t−sinz=sin

t∈[0π].È

esinxcosxcosyΓ1aa···a1a··1aa···a1a··· 惐峐䑜矐f(x,...,x)=(x,... .a·· 1

·· 翐¶ 飐yÒ ¤糐峐Ò 狐Ò 蓐业: Ù¥n翐¶ 飐yÒ ¤糐峐Ò 狐Ò 蓐业:1提µ峐櫐(15©)提µ¡ S:a2+b2+c2= a,b,c>苐S勐Ü-菐A(x0,y0,z0)§闐A菐且与S相切擐¤䡜直线凐¤鋐¡Σ.y² 糐Π§¦SΣSΠ¶Ó时¦Ñ²Π擐方2翐¶ 翐¶ 飐yÒ ¤糐峐Ò Ò 蓐业:狐提µ 䭜櫐£15©¤惐ABCþn某軐方叐§提µ AB−BA= AC= BC=y²µC´幕毐方叐y²µABCÓquþ䭜埐叐䉜CI=0,¦n擐最に值密µ密µ 答铐时Ø要超闐䅜3提µ䱜櫐£曐铐20©¤f(x)[01]þ提µ¼êf(0)f(1)0.¦yZ Z|f0dx::,

|f(x)|dx

Z|f00(x)|04翐¶ 翐¶ 飐yÒ ¤糐峐Ò Ò 蓐业:狐 Ê£曐铐10©¤G为瓐§vµ∀x,y提µ G,(xy)2=(yx)2.y²µ∀x,y∈G,dxyx−1y−1擐提µØ超闐密µ密µ 答铐时Ø要超闐䅜5提µ臐櫐£曐铐10©¤惐E⊂Rn为可ÿ臐,m(E)提µ惐f,fk∈L2(E),糐Eþ諐に裐裐䡜fk→f§¦yµ

JE|fk(t)−f(t)|2dt=

lim

|fk(t)|2dt

|fE6翐¶ 翐¶ 飐yÒ ¤糐峐Ò Ò 蓐业:狐提µ Ô櫐£曐铐10© ý哐Ρ提µ\r(u,v)={acosu,bsinu, −π::,u::, −∞<v<£1¤¦Sþÿ£2¤惐a=b.寐P=(a00)Q=(acosu0asinu0v0)(−π<u0<π,−∞<v0<+∞).廐ÑSþë提PQü菐擐最á­线擐方§.密µ密µ 答铐时Ø要超闐䅜7提µ䥜櫐£曐铐10©¤í峐¦狐线绐方§|擐提µª§¿y²ª²ÚÂñ8翐¶ 翐¶ 飐yÒ ¤糐峐Ò Ò 蓐业:狐提µ Ê櫐£曐铐10©¤惐¼êf(z)糐 哐|z|<1鳐提µ Û§糐Ù蟐矐þë.䉜糐|z|1þ|f(z)|1.y²f(z)为䡜䭜¼ê.密µ密µ 答铐时Ø要超闐䅜9提µ十櫐£曐铐10©¤惐X1X2···Xn´ÕáÓ©Ù擐随Å賐þÙ䡜“Ó擐©Ù¼êF(x)Ú密ݼêf(x).yéÅþX1X2···Xn黐大に㭜鳐­泐üXn1::,Xn2::,···::,提µÇ¦随Å賐þ(Xn1,Xnn)擐é 密ݼêf1n(x,Ç㕜鏐Xi(i=12···n)Ñ䥜«䩜[0,1]þ擐þ櫐©Ù§¦随Å賐þU=XnnXn1擐密ݼêfU(êÆ2018䁜3擐 Á磐ª ©¨÷© 铐—峐䭜䱜䱜提绐¿:1.䁜4大铐´胐答铐,5–10大铐¥裐À䭜铐,铐Ò要㑜㥜þ¡擐闐¥¤䡜答铐Ñ闐廐糐䅜Áò纸密µ线䩜蟐,廐糐Ù§纸þ-ÆÃ凐密µ线左蟐请Õ答铐,密µ线勐Ø提䡜翐¶苐相烐鋐駐 4.㕜答铐空xØ叐,可廐糐凐页寐¡²Ò密µ密µ 答铐时Ø要超闐䅜提µ((20©)(z5提µ(

011

§n≥1§Ù¥I´

Ó某擐方叐©铐rankH4)=3limln(1+tanx)−ln(1+sinx)=13

x=πsint /(3)惐Γ为空䩜­ y=t−sinz=sin

,t∈[0,π].铐竐峐矐­线È esinxcosxcosyΓ)siny +coszdz=

···x ···(4)惐峐䑜矐f(x,...,x)=(x,...,x 擐Ý叐A

翐¶ 飐yÒ ¤糐峐Ò 翐¶ 飐yÒ ¤糐峐Ò 狐Ò 蓐业:a·· 1a ··a1 Ù¥n1aR铐f糐巐に賐换䉜擐鋐飐磐为((n1)a1)y12(a1)y22···(a 答㙜.(1)Hn´m=2n某é方叐§糐巐に方叐P¦P−1HnP=D´1 \ \

\−1 埐方叐©䥜囐§Hn+1

相q©惐HnO O ¤䡜諐埐值´λ1λ2···λm§Hn+1擐¤䡜諐埐值´λ11λ1−1λ21λ21···λm+1λm−1©|㭜êÆ臐诐{韐´y²µHn擐¤䡜ØÓ諐埐值为{nn2k|k=01···n}§¿且z个諐埐值n−2k擐代ê­ê为n

©k!(n−4䅜§rankH4244方法二µ©¬Ð绐:|Lagrange¥½䭜可±zlimln(1+tanx)−ln(1+sinx)=limtanx−sinx=lim1−cosx= -

只鋐¦ÑA擐旐Ü值蛐可wAa−1)I擐秩<1.Aa−1)I擐毐空䩜擐维ê�n−1,䥜囐可惐A擐n个諐征值为λ1=1−a,λ2=1−a,···,λn−1=1−a,绐trA=n,拐提λn=(n−1)a+1.燐鏐§f糐巐に賐换䉜擐鋐飐磐为((n−1)a1)y2−(a−1)y2−···−(a− 2提µ 峐櫐(15©)糐空䩜直埐坐鋐㕜䉜§惐䡜ý提µ S:a2+b2+c2= a,b,c>苐S勐Ü-菐A(x0,y0,z0)§闐A菐且与S相切擐¤䡜直线凐¤鋐¡Σ.y² 糐Π§¦SΣSΠ¶Ó时¦Ñ²Π擐方狐µÏA糐S擐勐ܧ 0 0+0−1> éuM(x,yz)∈SΣ§ëAM擐直线駐为lM§Ùëê§ ˜=x+t(x− −∞<t< 密µ 答铐时Ø要超闐䅜密µ 答铐时Ø要超闐䅜(x+t(x−

(y+t(y−

(z+t(z− =

z2+

+

+0+0+0−

0x+0y

z0+

a2+b2+c2 a2x+b2y+c2 =

(5©Ï为菐M糐ý¥Sþ§x2+y2+z21.¤±þªz

(x0x

y0y+z0

z0 1

0+0+0−

+

1− x+ y+

=翐¶ 飐yÒ ¤糐峐Ò Ò 蓐业:狐翐¶ 飐yÒ ¤糐峐Ò Ò 蓐业:狐x0x+y0y+z0z−1= 䅜时䅜 §方§(3)擐Ä项系êz 0+0+0−1> 3諐飐磐§(4)擐㕜êþØÏ´²§§燐½²Π.þãíy²叐S∩Σ⊂Π§䥜囐y²叐S∩Σ⊂S∩Π.(12©反之§éuS∩Πþ擐裐-菐M(x,yz)§䅜(3)櫐(4)üª蛐§䅜A櫐Mü菐燐½lM-½糐菐M与S相切.拐䅜½Â§lM糐鋐¡Σþ.諐飐磐§M∈Σ.䅜M擐裐¿绐§S∩Π⊂S∩Σ.燐Ø提y (15©ÏA糐S擐勐ܧ 0+0+0>1> éuM(x1y1z1)∈SΣ§ý¥S糐M菐擐切²方§可±廐x1x+y1y+z1z−1=0. ÏëMÚAü´S糐菐M擐切线§¤±A菐糐þã²þ.x1x+y1

+z1

–1=a2 b2

c2u´§菐M(x1y1z1)糐²£§䅜£6¤ª§x0y0z0ØΠ:x0x+y0y+z0z−1= þ§蛐䡜MS反之§éuM(x1y1z1)∈SΠ§

(10©铐S糐M菐擐切²

x0xa21x

+y0b2y

+z0c2z

–1=1x

1y

1z−1= ÏA(x0y0z0)菐§ÏM,A擐ë糐菐MÚý¥¡S相切§§糐鋐¡Σþ.拐MS∩燐Ø提y (15©4提µ 䭜櫐£15©¤惐AB,Cþn某軐方叐§且提µ AB−BA= AC= BC=y²µC´幕毐方叐y²µABCÓquþ䭜埐叐䉜CI=0,¦n擐最に值y²Ù¥Ji为諐埐值λié諐擐Jordan¬.éÝ叐B做与C相Ó擐©¬§B=(Bij)k×k.䅜BC=CB可提JiBij=BijJj,ij=12k.ù懐é裐¿õ项ªp䡜 p(Ji)Bij=Bijp(Jj).寐p为Ji擐最にõ项ª§铐提Bijp(Jj)=0.凐iI=j时§p(Jj)密µ 答铐时Ø要超闐䅜䅜AB−BA=C提AiiBii−BiiAii=Ji,i=1,...,k.拐Tr(Ji)=Tr(AiiBii−BiiAii)=0,i=1,2,...,k.䥜囐λi=0,蛐C为幕毐方密µ 答铐时Ø要超闐䅜盐V0={v∈Cn|Cv=0}.é裐¿v∈V0,䅜uC(Av)=A(Cv)=0,Ï䅜AV0⊆V0.Ó䭜§BV0⊆V0.u´ 糐0I=v∈V0Úλ∈C¦提Av=λv毐駐V1={v|Av=λv}⊆V0,䅜AB−BA=C §é裐¿u∈V1,A(Bu)=B(Au)+Cu=λBu.拐BV1⊆V1.䥜囐糐0I=v1∈V1苐µ∈C¦提Bv1=µv1,Ó时䡜Av1=λ1v1,Cv1=0.òv1珐¿为Cn擐-|Ä{v1,v2,...,vn},盐P=(v1vn)§( AP=

BP=

CP= 翐¶ 飐yÒ ¤糐峐Ò Ò 蓐业:翐¶ 飐yÒ ¤糐峐Ò Ò 蓐业:狐A1B1C1÷vA1B1B1A1=C1A1C1=C1A1B1C1=C1B1.䅜êÆ臐{蛐可提,A,B,CÓ时相quþ䭜埐叐 (10©§\=E1§A,B,妨惐C 01.铐䡜AC=CA提A a1a2.㹜q䅜䡜BC=CB提B \0 b1b2.u´AB−BA=0§ùAB−BA=C䑜ñ!拐÷vCI=0擐 にn为 (15©5提µ䱜櫐£曐铐20©¤f(x)[01]þ提µ¼êf(0)f(1�0.¦yr r|ft(x)|dx<

|f(x)|dx

r|ftt(x)|0狐 惐M=max|ft(x)|=|ft(x1)|,m=min|ft(x)|=|ft(x0)|.铐r Ir|ftt(x)|dx�

Iftt(x)

=|ft(x1)−ft(x0)|�M−0痐-方¡

1 J10|ft(x)|dx<

dxM拐只鋐y

(5©rm<0

|f(x)| ft(x[01]¥毐菐,m=0䅜时(2)w痐¤á.y糐㽜惐ft(x)[0þÃ毐菐,Ø妨惐ft(x)>0,Ï囐f(x)î格緐飐.䉜¡©ü«情磐裐Ø (10©情磐1f(0)�0䅜时f(x)�0x∈[01])ft(x)=|ft(x)|�m,r|f(x)|dx

rf(x)dx

r(f(x)−f(0))dx+f0 r0 r r0 (f(x)−f(0))dx0

0

ft(ξ)xdx

mxdx=1 拐,(2)¤á (15©情磐2f(0)0䅜时䡜f(1)<0根âf擐緐飐绐,f(x)<0x∈[0r |f(x)|dx=

1f(x)dx

r(f(1)−f(x))dx−frrr rrr |f(1)−f(x)|dx |ft(ξ)|(1−x)dx

m(1−x)dx

1 䅜时(2)也¤á.绐µf(0)f(1�0可Øf(x�0x∈[01].可只Ä情磐1.(20©)6翐¶ 翐¶ 飐yÒ ¤糐峐Ò Ò 蓐业:狐 Ê£曐铐10©¤G为瓐§vµ∀x,y提µ G,(xy)2=(yx)2.y²µ∀x,y∈G,,dxyx−1y−1擐提µØ超闐y².䡜yx2y=yx2. þx2y=((xy−1)y)2y=(y(xy−1))2y=yxy−1yx=(3©篐yx−1y−1xxy−1x−1.ù可x−1y−1x=x(x−1)2y−1x=xy−1(x−1)2x=/wÑ (6©密µ 答铐时Ø要超闐䅜 最后凐y(xyx−1y−1)2e.密µ 答铐时Ø要超闐䅜(xyx−1y−1)2=xy(x−1y−1x)yx−1y−1==(xyx)(y−1x−1y)x−1y−1=xyx(yx−1y−1)x−1y−1=(xy)2(x−1y−1)2=(xy)2(xy)−2=y矐 (10©7提µ臐櫐£曐铐10©¤惐E⊂Rn为可ÿ臐÷vm(提µ惐ffkL2(E),糐Eþ裐裐䡜fkf§¦y

lim r

|fk(t)|2dt

|f(t)|2dt<E

|fk(t)−f(t)|2dt=Ey²µ䡜y裐寐F⊂Er

r|fk(t)|2dt

|f 䅜FatouÚ |f(t)|2dtF

liminfF<lim

|fk(t)|2dt<lim

I=lim

|fk(t)|2dt

r<limr

r|fk(t)|2dt−lim r

|f(t)|2dt

liminfr |f(t)|2dt

|f(t)|2dt

|f Ï䅜(∗)¤á (4©䅜u|f|2可ȧ裐给E0§糐δ0¦裐寐可ÿF⊂E÷vm(F)δ时 |f(t)|2dt

E (6©䅜叶鏐âŽ䭜§糐Eδ⊂E§¦提m(E\Eδ)<δ§且糐Eδþfk-致磐Âñf毐Ï糐N1§裐寐k�N1§t∈Eδ

(t)−f(t)|<

3(1+

8 䅜um(E\Eδ)δ§|(**)·们r

(8©䅜(*)·们

r

|f(t)|2dt<Er 拐糐N2§¦提裐寐k�N2

|fk(t)|2dt

|fr

盐N=max(N1N2)§铐凐k�N§ |fk(t)−f密µ密µ 答铐时Ø要超闐䅜 |fk(t)−f(t)|2dt |fk(t)−f m(E)+3(1+

|f(t)|2dt+k

|f翐¶ 飐yÒ ¤糐峐Ò 狐Ò 翐¶ 飐yÒ ¤糐峐Ò 狐Ò 蓐业: (10©9提µÔ櫐£曐铐10© ý哐Ρ提µr(u,v)={acosu,bsinu, −π<u< −∞<v<£1¤¦Sþÿ£2¤惐ab.寐Pa00)Qacosu0asinu0v0(−πu0π,−∞<v0+∞).廐ÑSþë提PQüá§.狐µ£1¤¦Sþÿ§.狐{-µru={−asinu,bcosu, rv={0,0,¤±§S擐 {向þn=ru×|ru×

=(a2sin2u+b2cos2

12{bcosu,asinu, 1惐γ´Sþÿ§Ùëê§u= v= t∈ Ä䡜§䅜u裐¿­¡þ擐直线£㕜鏐糐擐{¤Ñ´ÿ磐线§Sþ擐直竐线£蛐u=~ê¤þ为ÿ磐线.u´只鋐¦÷v㭜件ut(t)I=0擐ÿ磐线.䅜时§可作γ擐ëê賐换¦提§可±㭜wª¼êv=f(u)£u∈[−ππ]¤绐闐«.u´§γ擐向þªëê方§z为r(u)={acosu,bsinu,f u∈[−π, 烐uëêu¦§rt(u)={−asinu,bcosu,f rtt(u)={−acosu,−bsinu,f ¤±§γ擐 切向þT(u)=|rt(u)|−1rt(u)=|rt|−1{−asinu,bcosu,f 㕜鏐s´γ擐䥜§铐䡜

=|rt(u)|.u´γÇ向þ

rtt|rt(u)|−1+ =rtt|rt|−2−rt|rt|−3· ϧγSþÿÇ (

ds,n,T=|rt|−2(rtt,n,¤±§γ´ÿ(rttnT0.篐䅜(6(9)Ú(10)§䅜ªI−acosu−sinufbcos asin

≡I−asin bcos fþª

ftt(a2sin2u+b2cos2u)=ft(a2−b2)sinucos £i¤ft≡0.铐v=f(u)≡c´~ꧭ线γ´Sþ擐巐棐线§蛐ý 密µ 答铐时Ø要超闐䅜a2+b2= z密µ 答铐时Ø要超闐䅜£ii¤ftI=0.铐(12)棐䅜ut f (a2−b2)sinucos(log|f|)=ft=a2sin2u+b2cos2=12(

(a2−b2)(sin2(a2−b2)sin2u+2 log(a2sin2u+b2cos2u) 21üuu裐竐È©§f1

=

u+

20IcR.篐È©2 2 f=

(a2sin2u+b2cos2u)1 0I=c∈ 翐¶ 翐¶ 飐yÒ ¤糐峐Ò Ò 蓐业:狐¤±§Sþÿ£i¤Sþ擐直竐线£v=~ꤶ£ii¤Sþ擐î棐ý哐£u=~ꤶ£iii¤­线(8)§Ù¥¼êf䅜(13)燐½. rýÎвþs1<s< −∞<v<Ù¥s=s(u)´ý r(u)={acosu,bsinu, −π<u<擐䥜¼êÏ为rΡÐ䩜为²¡é諐擐賐换に±­¡þ­线擐䥜Ø賐§囐に£蛐棐å¤rÿ磐线賐为ÿ磐线§¤±® ý哐Ρþ擐ÿ磐线é諐uþã带磐«域¥擐ÿ磐线蛐直线.根â²þ§§§As+Bv+C=痐-方¡§䅜䥜微©ú ds=|rt(u)|du拐

(a2sin2u+b2cos2

)2(s a2sin2u+b2cos2

)2 ý¥þ¤¦ÿ§r ) a2sin2ub2cos2u2duBvC ABØ㕜鏐A0§铐䡜v=~ê§é諐ýÎþ擐î棐ý哐㕜鏐B0§铐r )a2sin2u+b2cos2u2du=~ê蛐u=~ê§é諐ý哐Îþ擐直竐线㕜鏐AI=0§BI=0§r )v≡f(u)=

2 cI=(8©£2¤䅜uba§䅜(13)燐½ÿ§(8)zr(u)={acosu,asinu,c1u+ c1,c2∈R,c1I= ϧéu½Q(acosu0asinu0£i¤㕜鏐u00§铐¤¦擐最á为ëPQ擐直竐线ãµ0v£ii¤㕜鏐v00§铐¤¦最áëPQ擐巐棐ý寐䥜ãµu0<u0£u00)½0<u<u0£u0翐¶ 翐¶ 飐yÒ ¤糐峐Ò Ò 蓐业:狐£iii¤㕜鏐u0I=0,v0I=0§铐凐ÿ磐线Ï闐P菐时§可惐c2=0.篐盐c1u0=v0§提c1=u−1v0.䥜囐¤¦擐最á­线方§为 r(u)={acosu,asinu,(u−1v Ù¥凐u0<0时§u∈[u0,0]¶凐u0>0时§u∈[0, (10©密µ密µ 答铐时Ø要超闐䅜提µ䥜櫐£曐铐10©¤í峐¦狐线绐方§|擐提µª§¿y²ª²ÚÂñ Än某线绐方§|Ax=b,ù䵜A为n某¢é¡巐½方叐§b为n维壐向þ毐¦狐鷐方§|棐䅜u¦峐䑜êf(x):=1xTAx−bT2¦¯ªxi+1=xi+αidi,i=0,1,2,...Ù¥x0为给½Ð值§xi´x擐竐iÚ鳐代值§di´iÚ䁜裐方向§αi为ÚÀ寐αi¦提f(xi+αidi)达巐最䉜§´提αi

dTi ,iidTiÙ¥ribAxi为í哐毐w痐ív緐íri+1=b−A(xi+αidi)=ri−Ý运Ý{¥§·¦鳐代方向珐䅜A-巐に§蛐iTAdj=0iI=j,¿且ri与rj(iI=j)珐䅜巐に§Ï䅜§可±凐軐“Ý方向di㕜䉜µd0= di+1=ri+1+ i=0,1,2,...䅜di与di+1A-dTAdi+1=dTA(ri+1+βi+1di)= i=0,1,2,... 拐䅜

dT= idTi dT =rTAd=rT(r− )= rT ±

αi

dTri=(ri+βidi−1)Tri=rT Ù¥㭜巐叐dTri=0.ò±þüªβi+1擐闐达ª可 rTrT βi+1 rTiiiu´¦线绐方§|Ax=b擐“Ý运ÝrTd0=r0=b− αi idTixi+1=xi+ ri+1=ri−rTβi+1 di+1=ri+1+irTii=0,1,2,..., (5©·们y²§“ÝÝõnÚ巐狐擐°燐值毐¢þ§Axi+1 αAd䡜密µ 答铐时Ø要超闐䅜/密µ 答铐时Ø要超闐䅜ù

Axn=Ax0+α1Ad1+...+dT(Axn−b)=dT(Ax0−b)+αidT i=0,1,...,n− ·们㵜²þª¢þ

=dTi(b−Ax0)

αk−1dTiAdk−1=dTi(b−翐¶ 飐翐¶ 飐yÒ ¤糐峐Ò Ò 蓐业:狐\/也Ò´㵜§Axn−b与¤䡜di巐に§i=0,1,...,n−1.䥜囐Axn= (10©提µÊ£曐铐10©¤惐¼êf(z糐ü哐|z|<1鳐狐Û§糐Ù蟐矐þë.䉜糐|z|1þ|f(z)|1.y²f(z)为䡜提µy²µÏ¼êf(z)糐ü哐|z|<1鳐狐Û,|z|=þ|f(z)|=1,铐f(z)糐ü哐|z|<1鳐擐毐菐只䡜䡜限õ个,惐为z1z2zn£毐菐算k个ü毐菐 (2©做賐 z−f(z)= (1<k< 1−zkαk为¢ê.铐fk(zr|z|1に磐韐峐为|fk(z)|1,|z|=1时|f(z)|=fk(zk)=0(1<k< (5©作¼F(z)= f−1(z)f(z)=f 1−zkzk=1 k=1z−Ù¥α= αk.铐¼êF(z)糐 哐|z|<1鳐狐Û§v䡜毐菐§糐|z|=þ|F(z)|= (7©䅜狐Û¼ê擐最大最に旐俐䭜§|z|<1þF(z)=C(~ê)§且|C|=uf(z)= z−zk=C1 z−k=11− k=11−为䡜䭜¼ê (10©提µ 十櫐£10©¤惐X1X2···Xn´ÕáÓ©提µ 擐随ÅþÙ“Ó©Ù¼êF(x)Úݼêf(x).yéÅþX1X2···Xn黐大に㭜鳐­泐üXn1<Xn2<···<Xnn.Ǧ随Å賐þ(Xn1,Xnn)擐é 密ݼêf1n(x,Ç㕜鏐Xi(i=12···n)Ñ䥜«䩜[0,1]þ擐þ櫐©Ù§¦随Å賐þU=XnnXn1擐密ݼêfU狐µ(a)駐(Xn1Xnn)擐éÜ©Ù¼êFXn1Xnn(x䉜xy, FX

(x,y)=P(Xn1<x,Xnn< n1密µ 答铐时Ø要超闐䅜=P(Xnn<y)−P(Xn1>x,X密µ 答铐时Ø要超闐䅜=P(X1<y,X2<y,···,Xn<y)−P(x<X1<y,x<X2<y,···,x<Xn<=[F(y)]n−[F(y)−F䉜x�yFn1Xnn(xyP(Xn1<xXnn<yP(Xnn<yF拐(Xn1Xnn)擐éÜ密ݼêl

(x,y)

n(n−1)[F(y)−F(x)]n−2f(x)f x< Ù

(4©(b䅜uXiÑ[0,1]þþ©Ùl 0<x< x<f(x)

0,Ù

,F(x) 0<x<1,x�u´䅜£a¤提(Xn1Xnn)擐éÜ密ݼêl

(x,y)

n(n−1)(y−x)n−2,0<x<y<1, Ù§.

(6©翐¶ 翐¶ 飐yÒ ¤糐峐Ò Ò 蓐业:狐l蛐方蟐駐v=xnnxn1,

u=xnn+

2

,鷐賐换擐v=xnn−

xnn=可烐竐壐ªJ=∂(xn1,xnn)=1§铐䅜(Xn1

nn)擐éÜÝ(UV

擐éÜÝfUV(u,v)=fl

u−v,u+

|Jn(n−1)vn−2,0<v<1,0<u−v<2,0<u+v< Ù铐UXnnXn1擐密ݼrfU(u)

fUV(u,J

vn−2dv=n 0<u<—= n(n21)J02−uvn−2dv2—=

–u)n−1,1<u< Ù蛐方法二蟐¦U擐©Ù¼êFU(u).wU擐寐值范围´[0,¤±§凐u0时§FU(uP(U<u0凐u�2时§FU(u凐0u1时§r

(10©FU(u)=P(U<u)凐1u2时

x+y<uf1n(x,y)dxdyr

r0

rx

n(n−1)(y−x)n−2dy

12FU(u)=P(U<u)

f1n(x,r r

rn(n−1)(y−x)n−2dy

r

n(n−1)(y−0 1

1(2−2

拐UXnnXn1擐密ݼfU(u)

n 0<u<22n(2−u)n−1,1<u<22 Ù

(10©(êÆ2018䁜3擐 Á磐ª ©¨÷© 铐—峐䭜䱜Ê臐䱜提绐¿:1.曐Áò“臐大铐2.¤䡜答铐ÑÁòµ,廐糐Ù§纸þ-Æà 3.密µÕ,密µØ¶4.㕜答铐空xØ叐,可廐糐凐页寐¡²Ò密µ 答铐时Ø要超闐䅜提µ(20©密µ 答铐时Ø要超闐䅜提µ (1)惐¢

011

§n≥1§Ù¥I´与

Ó某擐方叐©铐rank(H4) ln(1+tanx)−ln(1+sin(

x=π

惐Γ为空䩜­ y=t−sinz=sin

t∈[0π.È

esinxcosxcosyΓ1aa···a1a···1aa···a1a··· 惐峐䑜矐f(x,...,x)=(x,... .a·· 1

·· 翐¶ 飐yÒ ¤糐峐Ò 狐Ò 蓐业: Ù¥n翐¶ 飐yÒ ¤糐峐Ò 狐Ò 蓐业:1提µ峐櫐(15©)提µ¡ S:a2+b2+c2= a,b,c>苐S勐Ü-菐A(x0,y0,z0)§闐A菐且与S相切擐¤䡜直线凐¤鋐¡Σ.y² 糐Π§¦SΣSΠ¶Ó时¦Ñ²Π擐方2翐¶ 翐¶ 飐yÒ ¤糐峐Ò Ò 蓐业:狐提µ 䭜櫐£15©¤惐ABCþn某軐方叐§提µ AB−BA= AC= BC=y²µC´幕毐方叐y²µABCÓquþ䭜埐叐䉜CI=0,¦n擐最に值密µ密µ 答铐时Ø要超闐䅜3提µ䱜櫐£曐铐20©¤f(x)[01]þ提µ¼êf(0)f(1)0.¦yZ Z|f0dx::,

|f(x)|dx

Z04提µ Ê£15©¤惐α(12)(1−x)α提µ\\裐ê akxk,n×n¢~êÝ叐A为幕毐Ý叐,I为n 叐.惐Ý阵值¼êG(x)½ÂG(x)

1

ak(xI+ 0::,x<翐¶ 飐yÒ ¤糐峐Ò Ò 蓐业:狐Áyéu1ijn,È gij(xdx翐¶ 飐yÒ ¤糐峐Ò Ò 蓐业:狐0密µ密µ 答铐时Ø要超闐䅜5提µ臐櫐£曐铐15©¤䡜矐ë¼êg(t):R→提µv1g(t2.x(t)(tR)´§¨(t)=g(t)x擐ü¦y 糐~êC2C106(êÆ2018䁜3擐 Á磐ª ©¨÷© 铐—峐䭜䱜Ê臐䱜提绐¿:1.曐Áò“6大铐¤䡜答铐Ñ闐廐糐䅜Áò纸密µ线䩜蟐,廐糐Ù§纸þ一ÆÃ凐密µ线左蟐请Õ答铐,密µ线勐Ø提䡜翐¶苐相烐鋐駐 4.㕜答铐空xØ叐,可廐糐凐页寐¡²Ò密µ密µ 答铐时Ø要超闐䅜提µ(20©z5©提µ 惐¢方叐

011

§n≥1§Ù¥I´

Ó某擐方叐©铐rankH4)=3limln(1+tanx)−ln(1+sinx)=13

x=πsint 惐Γ为空䩜­ 䥜t=0巐t=π擐一ã.铐竐峐矐­线Èy=t−sin z=sin2tesinxcosxcosydx−sinydy+coszdz=Γ2

·· ·· 惐峐䑜矐f(x1xnx1x

擐ÝA.

a·· 翐¶ 飐yÒ ¤糐峐Ò 狐Ò 翐¶ 飐yÒ ¤糐峐Ò 狐Ò 蓐业: Ù¥n1a∈R.铐f糐巐に賐换䉜擐鋐飐磐为n1)a1)y2(a1)y2···(a 1 答㙜.(1)Hn´m=2n某é¡方叐§糐巐に方叐P¦提P−1HnP=D´ \ \

埐方叐©䥜囐§Hn+1

相q©惐HnO O ¤䡜諐埐值´λ1λ2···λm§Hn+1擐¤䡜諐埐值´λ11λ1−1λ21λ21···λm+1λm−1©|㭜êÆ臐诐{韐´y²µHn擐¤䡜ØÓ諐埐值为{nn2k|k=01···n}§¿且z个諐埐值n−2k擐代ê­ê为n

©k!(n−4䅜§rankH4244方法二µ©¬ÝÐ绐:|Lagrange¥½䭜可±{zlimln(1+tanx)−ln(1+sinx)=limtanx−sinx=lim1−cosx= -

只鋐¦ÑA擐旐Ü值蛐可wAa−1)I擐秩<1.Aa−1)I擐毐空䩜擐维ê�n−1,䥜囐可惐A擐n个諐征值为λ1=1−a,λ2=1−a,···,λn−1=1−a,绐trA=n,拐提λn=(n−1)a+1.燐鏐§f糐巐に賐换䉜擐鋐飐磐为((n−1)a 1)y2−(a−1)y2−···−(a− 2提µ 峐櫐(15©)糐空䩜直埐坐鋐㕜䉜§惐䡜ý提µ S:a2+b2+c2= a,b,c>苐S勐Ü一菐A(x0,y0,z0)§闐A菐且与S相切擐¤䡜直线凐¤鋐¡Σ.y² 糐Π§¦SΣSΠ¶Ó时¦Ñ²Π擐方狐µÏA糐S擐勐ܧ 0 0 0−1> éuM(x,yz)∈SΣ§ëAM擐直线駐为lM§Ùëê§ ˜=x+t(x− −∞<t< 密µ 答铐时Ø要超闐䅜密µ 答铐时Ø要超闐䅜(x+t(x−

(z+t(z−z+ + =1.

z2+

(

+

+0+

+0−

0x+0y

z0+

a2+b2+c2 a2x+b2y+c2 =

(6©Ï为菐M糐ý¥Sþ§x2+y2+z21.¤±þªz

(x0x

y0y+z0

(

z0 1

0+0+0−

+

x+ y+

=翐¶ 飐yÒ ¤糐峐Ò Ò 蓐业:狐翐¶ 飐yÒ ¤糐峐Ò Ò 蓐业:狐x0x+y0y+z0z−1= 䅜时䅜 §方§(3)擐Ä项系êz 0+0+0−1> 3諐飐磐§(4)擐㕜êþØÏ´²§§燐½²Π.þãíy²叐S∩Σ⊂Π§䥜囐y²叐S∩Σ⊂S∩Π.(12©反之§éuS∩Πþ擐裐一菐M(x,yz)§䅜(3)櫐(4)üª蛐§䅜A櫐Mü菐燐½lM一½糐菐M与S相切.拐䅜½Â§lM糐鋐¡Σþ.諐飐磐§M∈Σ.䅜M擐裐¿绐§S∩Π⊂S∩Σ.燐Ø提y (15©ÏA糐S擐勐ܧ 0+0+0>1> éuM(x1y1z1)∈SΣ§ý¥S糐M菐擐切²方§可±廐x1x+y1y+z1z−1=0. ÏëMÚAü´S糐菐M擐切线§¤±A菐糐þã²þ.u´§菐M(x1y1z1)糐²

x1xa2

+y1b2

+z1c2

–1=Π:x0x+y0y+z0z−1= þ§蛐䡜M∈S∩ (12©反之§éuM(x1y1z1)∈SΠ§铐S糐M菐擐切²

x0xa2

+y0b2

+z0c2

–1=x1x+y1y+z1z−1= ÏA(x0y0z0)菐§ÏM,A擐ë糐菐MÚý¥¡S相切§§糐鋐¡Σþ.拐MS∩燐Ø提y (15©4提µ 䭜櫐£15©¤惐ABCþn某軐方叐§提µ AB−BA= AC= BC=y²µC´幕毐方叐y²µABCÓquþ䭜埐叐䉜C/=0,¦n擐最に值y²惐C擐ØÓλ1λkØCäJordan鋐飐矐µC=diag(J1Ù¥Ji为諐埐值λié諐擐Jordan¬.éÝB做与C相Ó©¬§B 䅜BC=CB可提JiBij=BijJj,ij=12k.ù懐éõ项ªp密µ 答铐时Ø要超闐䅜 p(Ji)Bij=Bijp(Jj).寐p为Ji擐最にõ项ª§铐提Bijp(Jj)=0.凐i/=j时§p(Jj)可㱜§䥜囐Bij=0.Ï䅜§B=diag(B11,...,Bkk).Ó䭜§A=diag(A11,...,Akk).䅜AB−BA=C提AiiBii−BiiAii=Ji,i=1,...,k.拐Tr(Ji)=Tr(AiiBii−BiiAii)=0,i=1,2,...,k.䥜囐λi=0,蛐C为幕毐方叐密µ 答铐时Ø要超闐䅜盐V0={v∈Cn|Cv=0}§wV0非空év∈V0䅜uC(Av)=A(Cv0,ÏAV0⊆V0.Ó§BV0⊆V0.u´糐0/v∈V0Úλ∈C¦Avλv毐駐V1={v|Av=λvv∈V0}⊆V0,䅜AB−BA=C§é裐¿u∈V1,A(BuB(AuCu=λBu.BV1⊆V1.䥜囐糐0/v1∈V1苐µ∈C¦Bv1µv1,ÓAv1λ1v1,Cv1=0.òv1Cn擐一|Ä{v1v2vn},盐P=(v1vn)§ AP=

BP=

CP= 0Ù¥A1B1C1为n−1某軐方叐且÷vA1B1−B1A1C1A1C1C1A1B1C1C1B1.䅜êÆ臐诐{蛐可提,A,B,CÓ时相quþ䭜埐叐 (10©§E1,妨惐C 01.铐䡜AC=CA提A 0

a1

.㹜qBCCB提B にn为

.u´AB−BA=0§ù与AB−BA=C䑜ñ!拐÷vC/=0擐翐¶ 飐yÒ ¤糐峐Ò翐¶ 飐yÒ ¤糐峐Ò Ò 蓐业:狐5提µ䱜櫐£曐铐20©¤f(x)[01]þ提µ¼êf(0)f(1�0.¦yr r|ft(x)|dx<

|f(x)|dx

r|ftt(x)|0狐 惐M=max|ft(x)|=|ft(x1)|,m=min|ft(x)|=|ft(x0)|.铐r Ir

I|ftt(x)|dx ftt(x)dxI=|ft(x1)−ft(x0)|�M− 痐一方J1|ft(x)|dxMJ1dxM拐只鋐y rm<0

|f(x)| (10©ft(x[01]¥毐菐,m=0䅜时(2)w痐¤á.y㽜惐ft(x)[0þÃ毐菐Ø妨惐ft(x0Ïf(xî格緐飐䉜©ü裐Ø情磐1f(0)�0䅜时f(x)�0x∈[01])ft(x|ft(x)|�m,r1|f(x)|dx

1f(x)dx

1(f(x)−f(0))dx+f0 r0

r 拐(2)¤á

(f(x)−f(0))dx0

ft(ξ)xdx0

mxdx 情磐2f(0)0䅜时䡜f(1)<0根âf擐緐飐绐,f(x)<0x∈[0r |f(x)|dx=

f(x)dx

r(f(1)−f(x))dx−frrr rrr |f(1)−f(x)|dx |ft(ξ)|(1−x)dx

m(1−x)dx

2䅜时(2)也¤á绐µ䅜f(0)f(1)�0,可Ø妨惐f(x)�0,x∈[0,1].可只Ä情磐 (20©6提µ Ê£15©¤惐α(12)(1−x)α提µ 裐ê akxk,n×n¢~êÝ叐A为幕毐Ý叐,I为叐.惐Ý阵值¼êG(x)½ÂG(x)

ak(xI+ 0<x<Áyéu1<i,j<n,È

rgij(xdx 糐擐¿©胐要㭜件´A3=0k狐答I.A为幕毐Ý拐䡜An0f(x1x)αjk时Cjk G(x)

ak(xI+A)k

akCk

j=0密µ 答铐时Ø要超闐䅜 区 (x) x∈(密µ 答铐时Ø要超闐䅜

(6©䉜䡜2mn¦Am/0Am+10lim(1−x)m−αG(x)=α(α−1)...(α−m+1)rm�3mα1䅜时

1G(x)dxuÑ (11© r 痐一方m<2m−α1䅜

G(x)dxÂñ r䱜之¦éu1<ij<n,È0

gij(xdx 糐擐¿©胐要㭜件´A3=翐¶ 飐yÒ翐¶ 飐yÒ ¤糐峐Ò Ò 蓐业:狐{II.JordanÑ7提µ臐櫐£曐铐15©¤䡜矐ë¼êg(t):R→提µv1g(t2.x(t)tR´§¨(t)=g(t)x擐ü韐巐狐¦y 糐~êC2C10Iy²一.盐y=x(t),铐y½Ò.Øy(t)�0(Ä铐Ät→−t䉜y燐 éC1=1,C2 3¤á√䉜糐t0,y(t0) 3IxII(t)x(t)−xIIy(t) =g(t)−y2<2−y2<−1,t<I铐y(t)|t<t< (5©I⇒⇒

<−1,t<⇒Jt0yIds<t−t,t<⇒tt>

−LL0为一个~ê.ùy(t糐Rþ½ 1 y(s)−2t2 䑜ñ (10©䉜糐t,y(t)<1铐yI=g(t)−y2>δ>0,t<t.ù⇒ <t,y(t)<0.䑜ñ (15©

y².Ø妨惐x(t緐飐£Äħx¨=g(−t)x¤.绐¨=g(t)x⇒x(−∞)=x˙(−∞)= (5©¨⇒1x˙(t)2

¨ds g(s)x˙ds

2 2

x˙ds22√ (15©8 20183—二三四五六七30111112121212注意:本试卷共七大题,满分100分,考试时间为180密封线左 答题,密封线外不得 及相关标记极限limtanxsinxx0xln(1sin2设一平面过原点和点(6,32,且与平面4xy2z8垂直,则此平面方程设f(xy)具有一阶连续偏导数,满足df(x,y)yeydxx(1y)eydyf(00)0,则f(x,y)

x1x2x3x4(0,1)x x xxf(x1)f(x2)f(x3)f(x x xx xx 省 学 准考证 考场省 学 准考证 考场 座位 满足 u(t)0u(t)dt及u(0)1的可微函数u(t)设abcd是互不相同的正实数,xyzw是实数,满足axbcd,bycda111111111111czdab11111111111102x0 1f(x)dx x1f(t)dtf(x)

n 8 1x2 x1

2f(t)dtf(x)arctan

(1x省 学 准考证 考场 座位 =1x省 学 准考证 考场 座位 xxx,x)TR

f(xy在区D(xy)x2y2a2上具iH(x)xi

,n2

f(xy)x2y2a2nf f2n

4证明:对任一非零xR,H(x)0 max a2,其中a0.证明:f(x,y)dxdy a4省 学 准考证 考场 座位 省 学 准考证 考场 座位

(x,y)Dx y

ln省 学 准考证 考场 座位 设0a1,n1,2,,且 an省 学 准考证 考场 座位 nln 证明:当q1时级数an收敛,当q1时级数an q1时级数an的收敛性PAGEPAGE520183一、填空题(满分30分,每小题6分极限 tanxsinx x0xln(1sin2 设一平面过原点和点(6,3,2),且与平面4xy2z8垂直,则此平面方程为2x2y3z0 f(x,y具有一阶连续偏导数,满足df(x,y)yeydxx(1y)eydy及f(0,0)0,则f(x,y) 2ete满 u(t) u(t)dt及u(0)1的可微函数u(t) 3abcd是互不相同的正实数,xyzw是实数,满足axbcd,bycda111111111111czdab111111111111二、(本题满11分)设函数f(x在区间(0,1)内连续,且存在两两互异的点x1x2x3x4(0,1),使得f(x1)f(x2)<f(x3)f(x4)=x1 x3x证明:对任意(x5x6(0,1),使得f(x5f(x6x F(tf((1t)x2tx4f((1t)x1tx3 4(1t)(x2x1)t(x4x3存在t0(0,1),使得F(t0) 3分x5(1t0x1t0x3x6(1t0x2t0x4x5x6(0,1)x5x6,xF(t0f(x5f(x6x 0三、(本题满分11分)设函fx在区间0,1上连续且1f(x)dx0证明0在区间0,1上存在三个不同的点x1,x2x3,使得 1f(x)dx= x1f(t)dtf(x) 8 1x2 x1

2f(t)dtf(x)arctan

(1x

=1x2 2 44arctanxf1 ,则F00F11且函数Fx10f区间0,1上可导 根据介值定理,存在点

0,1,使Fx13235再分别在区间0,x3与x3,1上利用拉格朗日中值定理,存在x1(0,x3)使得F(x3F(0)F(x1)(x30) 80f(x)dx1x20f(xdxf(x1arctanx1x3;3 1且存在x2(x3,1),使F(1)F(x3F(x2)(1x3 1f(x)dx x2f(x)dx x)8 1x2

f(x)arctan 2 3四、(本题满分12分)limn1(n1nn!n (n (n【解】注意到n1(n1)!

nn!, 3 n lim1nln

n lim k ,3分n n1(nn 1n1(nn(n1)n[(n

(n1)n(n

n

=

(n

k

3利用等价无穷小替换ex x(x0), 0lnxdx1 0lnxdx1n 1(n11 ne n 1=limnn1n1(n

nlimnn•lim 3n n 五、(本题满分12分)xxx,,x)TRnH(x

nx2n1xx n2

i

i 2【证】(1)二次型H(x)xi 2

A

2

,3分1 2 11 11 A实对称,其任意k阶顺序主子式k0A正定,故结论成立…3 (2)对A作分块如下A ,其中(0,,0,1)TRn1 A1

1T

0阵P ,则PAP ,其 n1 1TA1 n1a1TA1 记xP(x,1)T,其中x(x,x,, )TRn1,因 H(x)xTAx(xT1)PT(PT)1 0P1Px0xT xa a 1 0 且 正定,所以H(x)xT xaa,当xP(x,1)TP(0,1)T时,H(x)a 0n1 因此,H(x)满足条件xn1的最小值为 3六、(本题满12分)设函f(xyD(xy)x2y2a2上具有f(x,

a2,以及max x2y2中a0.f(xy)dxdy4a4

f(x,y)Dx

P(x,y)dxQ(x,y)dy QP

D Pyf(xyQ0P0Qxf(xyf(x,y)dxdy yf(x,y)dxyfdxdy f(x,y)dxdy xf(x,y)dyxfdxdy

f f(x, 2 D

yy 4 ydxxdyadxdy ……2 对I2的被积函数利用柯西不等I2

1xf

dxdy

1

x2fx2f fxy

ax2y2dxdy1a442 ln七、(本题满分12分)设0a1,n1,2,,且 anq(有限或 nln 证明:当q1时级数an收敛,当q1时级数an q1时级数an(1q1,则pR,s.t.qp1NZ1 ln nN, p,即anp,而p1时p收敛,所以anln 3若q1pR,s.t.qp1NZ,s.t.nNln ln p,即an p,而p1时p发散,所以anln 3 当q1时,级数an n例如:an 满足条件,但级数an发散 3n 又如:annln2n满足条件,但级数an收 3第十届大学生数学竞赛(非数学类)预赛试题及答一、填空题(24分,4小题,6分 (1)设(0,1lim(n1)n 1 1 1 1 解由于 ,则(n1)nn11n1 1 n n n n 0n1)n1lim(n1)n0 xt+cos

y(x)由eyty+sint1确定,则此曲线在t0对应点处的切线方程y0(x解:当t0时,x1,y0,对xtcost两边关于t求导:dx1sint, 1 dtt对eyty+sint1两边关于t求导:eydyytdycost0 1,则 1 dtt dxtln(xln(x 1x21

(1x2

dxx1ln(x1xx1ln(x1x2)1ln(1x2)2ln(x1ln(x1x2(1x2

dx

dtsec

ln(tantsect)dsinln(tantsect)dsintsintln(tantsect)sintdln(tantsecsintln(tantsect) (sec2ttantsectantsecsintln(tantsect)sint1sintln(tantsect)ln|cost|C= ln(x1x2)1ln(1x2)C12

ln(x1x2)(1x2)3/2ln(x1x2)(1x2)3/211 ln(x1x2)

111111x2x1

ln(x1x2)xdx1111= ln(x1x2)1ln(1x2)121cos1cosxcos2x3cos 11cosxcos2x3cos3x

1cos cosx(1cos2x3cos3x) x0 cos2x3coscos2x3cos

cos2x(13cos3x)

x0 1lim 13(cos3x1)1 x0 1lim1cos2xlim1cos3x113 8f(t在t0f(1)0f(x2y2Lyx相交的分段光滑闭曲线.LP(xyy(2f(x2y2Q(xyxf(x2y2径无关,于是有Q(x,y)P,由此可知(x2y2f(x2y2f(x2y2 5分记tx2y2,则得微分方程tf(tf(t1,即(tf(t))1tf(ttCf(10,可得C1,f(t11f(x2y2t

x2814f(x在区间0,1]上连续,且1f(x3.11f dx4 0f 证明.f f1 f f1

dx0f(x)dx0f

4 又由f(x1f(x30,则f(x1f(x3/f(x0f f(x) f(x) 4 1f f(x)00由于1f(x)dx 0

dx

1 f(x) 0f0f 00f

dx 11f dx 14 0f 12计算三重积分(x2y2dV,其中(V)x2y2z2)24x2y2(z1)29,z0所围成的空心,, 0r3,0,0(x2y2dV2dd3r2sin2r2sindr835 4 (V):xrsincos,yrsinsin,z2r 0r2,0,0(x2y2dV2dd2r2sin2r2sindr825 8 (V29rxrcos,yrsin9r(V3):9r0r22,09r

z(x2y2)dV r2dz 2

1)dr(124235

2

r3(V r2

(x2y2dV(x2y2dV(x2y2dV(x2y2dV256 12(V (V (V (V fxyf 五(本题满分14分)设ffxyf 证明:作辅助函数(t)f(x1t(x2x1),y1t(y2y1)) 2显然(t)在[0,1]上可导.根据拉格朗日中值定理,存在c(0,1),使(1)(0)(c)f(uv(xxf(uvyy 8 |(1)(0)||f(x,y)f(x,y)||f(u,v)(xx)f(u,v)(yy)

f(u,v)

f(u,v)21/

22 2

[(xx

(yy)

M|AB 14

14f(x0,有ln0f(x)dx0lnf(x)dx 1 k1kf(x在[0,1上连续,所以0f(x)dxlimnf(xkxk

, 1

k

n4f(xnn由不等式f(x1)f(x2 f(xk),根据lnf(xnnk1 1 lnf(xk)ln f(xk 12 k k 根据lnx1 1 n 0 lim lnf(xk)limln f(xk)得lnf(x)dxlnf n 0 n k k 七(本题满分14分)已知{ak},{bk}是正项数列,且bk1bk0,k1, ,b bk一常数.证明:若级数

收敛,则级数k ak k收敛 b证明:令

k ikab,abS i

k,S0,

k1SkSk1,k1,kbk k kb 4 NSkSk N

S N1bk1

Na Sk

kN

SN

k k k1 k1 k kk k1kkSkk1bkbk

10由不等式k(a a)(b b)a1b1a2b2 abSkk 1 1 ak bk) Sk,故结论成 14 k bk k1bk(êÆ,2018䁜10擐 ©¨÷© 100铐飞峐䭜䱜Ê臐䱜提:1.¤䡜答铐Ñ闐廐糐䅜Áò纸密µ线䩜蟐,廐糐Ù§纸þ飞ÆÃ凐密µÕ,密µØ¶苐相烐鋐駐㕜答铐空xØ叐,可廐糐凐页寐¡,¿鋐²铐Ò密µ线答铐时Ø\/飞櫐(15©)糐空䩜直埐坐鋐㕜¥,惐êS擐方§为x2y2=2z.惐σ为²zαxβyγ,Ù¥αβγ为给½~ê.¦ê髐SþP擐坐鋐§¦提闐P且á糐ê髐Sþ擐直线þ²竐u²密µ线答铐时Ø狐µ¤¦P菐坐鋐为P=(abc),÷va2b22c.铐闐P£=£(t)=(a,b,c)+t(u,v,w),u2+v2+w2/=0,t∈直线£(t)áêSþ§u´

(u2−v2)t2+2(au−bv−w)t=0,t∈R.au−bv=w,u2−v2=0.v=εu,w=(a−εb)u,ε=

(5©翐¶ 飐yÒ: ¤糐峐Ò 狐Ò 翐¶ 飐yÒ: ¤糐峐Ò 狐Ò 蓐业:£1=£1(t)=(a,b,c)+tu(1,1,a−£2=£2(t)=(a,b,c)+tu(1,−1,a+ùü㭜直线擐方向向þ(11a−b)Ú(1−1a+b)þ²竐u²¡σ,囐²¡σ擐{向 α+β=a−b,α−β=a+1页£6页u拐¤¦P

a=α,b=−β,c

1(α2−2

(10©P=(α,−β,1(α2−2

(15©峐櫐(15©)Aaij)n×n为n某¢方叐a11=a22=···=ann=> ézi(i=1n),

|aij|

|aji|<¦f(x1xn)=(x1xn 擐绐范磐狐:fx

)A+A

.盐B=bj)=A+AT,铐B为¢é¡叐(2©且

b11=b22 =bnn= |b|区|aij+aji|<燐鏐§bii

j/=i

(5©䉜λ为B擐諐征值§α 为烐uλ擐非毐諐埐向þ§|xi|=max1勺j勺n|xj|>䅜uBα=

λ=

j�a

|>

(10©2页£6页拐B为巐½Ý叐§f擐绐范磐为y2··· (15©为

䭜櫐£20©¤d素擐为寐êÝÝ.惐n某方叐A,B擐为寐Ýy²üµi)A可㱜且A−1軐为寐ݶii)A擐竐壐ªýé䉜 A,A−2B,A−4B,...,A−2nB,A−2(n+1)B,...,A−2(n+擐可㱜§且§们擐㱜Ý叐擐軐为寐Ý叐.y²µAB可㱜y²:1)i)⇒ii).䅜AA−1= |A|·|A−1|=1.绐¿巐|A|,|A−1|擐为寐ê拐A擐竐壐ªýéii)⇒i).䅜AA∗= A−1=A∗/|A|á蛐i)¤á £10© Äõªp(x)=|AxB|2铐䅜®p(0)p(2)p(4)p(4n)擐值擐为1.燐鏐õ项ªq(x)=p(x−1䡜超2n个擐毐菐§䥜囐提Ñq(x)≡0,蛐p(x)≡1.密µ答铐时Ø諐飐磐§p(−1)=|A+B|2=1.拐A+B可㱜.y矐 £密µ答铐时Ø䱜櫐£15©¤f(x)[01]þë㙜可微,x=0裐䡜裐¿某峐êf(n)(00(n�0),且糐~êC0¦y²:(1)

f

|xf户(x)|勺C|f ∀x∈[0,0(n�0);(2)[01]þ¤áf(x)≡y²:(1)䅜㽜惐,é裐Ûm�0,f(x)糐毐菐韐賐䡜m1某峐ê,䥜囐f糐x=0ë㙜.Ï䅜,limf(x)=f(0)=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论