2022年辽宁省营口市大石桥石佛中学数学九年级第一学期期末综合测试试题含解析_第1页
2022年辽宁省营口市大石桥石佛中学数学九年级第一学期期末综合测试试题含解析_第2页
2022年辽宁省营口市大石桥石佛中学数学九年级第一学期期末综合测试试题含解析_第3页
2022年辽宁省营口市大石桥石佛中学数学九年级第一学期期末综合测试试题含解析_第4页
2022年辽宁省营口市大石桥石佛中学数学九年级第一学期期末综合测试试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.已知,则锐角的取值范围是()A. B. C. D.2.平面直角坐标系内,已知线段AB两个端点的坐标分别为A(2,2)、B(3,1),以原点O为位似中心,将线段AB扩大为原来的2倍后得到对应线段,则端点的坐标为()A.(4,4) B.(4,4)或(-4,-4) C.(6,2) D.(6,2)或(-6,-2)3.如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=4cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<12),连接DE,当△BDE是直角三角形时,t的值为()A.4或5 B.4或7 C.4或5或7 D.4或7或94.神舟十号飞船是我国“神州”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为()A.2.8×103 B.28×103 C.2.8×104 D.0.28×1055.已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为()A.5 B.﹣1 C.2 D.﹣56.如图,已知和是以点为位似中心的位似图形,且和的周长之比为,点的坐标为,则点的坐标为().A. B. C. D.7.如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()A.6 B.5 C.4 D.38.如图,在平行四边形中,为的中点,为上一点,交于点,,则的长为()A. B. C. D.9.已知关于x的方程(m+4)x2+2x﹣3m=0是一元二次方程,则m的取值范围是()A.m<﹣4 B.m≠0 C.m≠﹣4 D.m>﹣410.如图,▱ABCD的对角线AC,BD相交于点O,且AC=10,BD=12,CD=m,那么m的取值范围是()A.10<m<12 B.2<m<22 C.5<m<6 D.1<m<11二、填空题(每小题3分,共24分)11.动点A(m+2,3m+4)在直线l上,点B(b,0)在x轴上,如果以B为圆心,半径为1的圆与直线l有交点,则b的取值范围是_____.12.边长为1的正方形,在边上取一动点,连接,作,交边于点,若的长为,则的长为__________.13.如图所示,某建筑物有一抛物线形的大门,小明想知道这道门的高度,他先测出门的宽度,然后用一根长为的小竹竿竖直的接触地面和门的内壁,并测得,则门高为__________.14.在实数范围内定义一种运算“※”,其规则为a※b=a2﹣b,根据这个规则,方程(x+2)※9=0的解为_____.15.函数y=(m为常数)的图象上有三点(﹣1,y1)、、,则函数值y1、y2、y3的大小关系是_____.(用“<”符号连接)16.已知,若是一元二次方程的两个实数根,则的值是___________.17.抛物线y=﹣3(x﹣1)2+2的开口向_____,对称轴为_____,顶点坐标为_____.18.设α、β是方程x2+2018x﹣2=0的两根,则(α2+2018α﹣1)(β2+2018β+2)=_____.三、解答题(共66分)19.(10分)在平面直角坐标系中,抛物线与轴的交点为A,B(点A在点B的左侧).(1)求点A,B的坐标;(2)横、纵坐标都是整数的点叫整点.①直接写出线段AB上整点的个数;②将抛物线沿翻折,得到新抛物线,直接写出新抛物线在轴上方的部分与线段所围成的区域内(包括边界)整点的个数.20.(6分)图1是某小区入口实景图,图2是该入口抽象成的平面示意图.已知入口BC宽3.9米,门卫室外墙AB上的O点处装有一盏路灯,点O与地面BC的距离为3.3米,灯臂OM长为1.2米(灯罩长度忽略不计),∠AOM=60°.(1)求点M到地面的距离;(2)某搬家公司一辆总宽2.55米,总高3.5米的货车从该入口进入时,货车需与护栏CD保持0.65米的安全距离,此时,货车能否安全通过?若能,请通过计算说明;若不能,请说明理由.(参考数据:1.73,结果精确到0.01米)21.(6分)篮球课上,朱老师向学生详细地讲解传球的要领时,叫甲、乙、丙、丁四位同学配合朱老师进行传球训练,朱老师把球传给甲同学后,让四位同学相互传球,其他人观看体会,当甲同学第一个传球时,求甲同学传给下一个同学后,这个同学再传给甲同学的概率22.(8分)在平面直角坐标系xOy中,抛物线y=x2+bx+c交x轴于A(﹣1,0),B(3,0)两点,交y轴于点C.(1)如图1,求抛物线的解析式;(2)如图2,点P是第一象限抛物线上的一个动点,连接CP交x轴于点E,过点P作PK∥x轴交抛物线于点K,交y轴于点N,连接AN、EN、AC,设点P的横坐标为t,四边形ACEN的面积为S,求S与t之间的函数关系式(不要求写出自变量t的取值范围);(3)如图3,在(2)的条件下,点F是PC中点,过点K作PC的垂线与过点F平行于x轴的直线交于点H,KH=CP,点Q为第一象限内直线KP下方抛物线上一点,连接KQ交y轴于点G,点M是KP上一点,连接MF、KF,若∠MFK=∠PKQ,MP=AE+GN,求点Q坐标.23.(8分)飞行员将飞机上升至离地面米的点时,测得点看树顶点的俯角为,同时也测得点看树底点的俯角为,求该树的高度(结果保留根号).24.(8分)一个箱子里有4瓶牛奶,其中有一瓶是过期的,且这4瓶牛奶的外包装完全相同.(1)现从这4瓶牛奶中随机拿1瓶,求恰好拿到过期牛奶的概率;(2)现从这4瓶牛奶中不放回地随机拿2瓶,求拿到的2瓶牛奶中恰好有过期牛奶的概率.25.(10分)如图,在平面直角坐标系中,矩形的顶点在轴上,在轴上,把矩形沿对角线所在的直线对折,点恰好落在反比例函数的图象上点处,与轴交于点,延长交轴于点,点刚好是的中点.已知的坐标为.(1)求反比例函数的函数表达式;(2)若是反比例函数图象上的一点,点在轴上,若以为顶点的四边形是平行四边形,请直接写出点的坐标_________.26.(10分)如图是输水管的切面,阴影部分是有水部分,其中水面AB宽10cm,水最深3cm,求输水管的半径.

参考答案一、选择题(每小题3分,共30分)1、B【分析】根据锐角余弦函数值在0°到90°中,随角度的增大而减小进行对比即可;【详解】锐角余弦函数值随角度的增大而减小,∵cos30°=,cos45°=,∴若锐角的余弦值为,且则30°<α<45°;故选B.【点睛】本题主要考查了锐角三角函数的增减性,掌握锐角三角函数的增减性是解题的关键.2、B【分析】根据位似图形的性质只要点的横、纵坐标分别乘以2或﹣2即得答案.【详解】解:∵原点O为位似中心,将线段AB扩大为原来的2倍后得到对应线段,且A(2,2)、B(3,1),∴点的坐标为(4,4)或(﹣4,﹣4).故选:B.【点睛】本题考查了位似图形的性质,属于基础题型,正确分类、掌握求解的方法是解题关键.3、D【解析】由条件可求得AB=8,可知E点的运动路线为从A到B,再从B到AB的中点,当△BDE为直角三角形时,只有∠EDB=90°或∠DEB=90°,再结合△BDE和△ABC相似,可求得BE的长,则可求得t的值.【详解】在Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=4cm,∴AB=2BC=8cm,∵D为BC中点,∴BD=2cm,∵0≤t<12,∴E点的运动路线为从A到B,再从B到AB的中点,按运动时间分为0≤t≤8和8<t<12两种情况,①当0≤t≤8时,AE=tcm,BE=BC-AE=(8-t)cm,当∠EDB=90°时,则有AC∥ED,∵D为BC中点,∴E为AB中点,此时AE=4cm,可得t=4;当∠DEB=90°时,∵∠DEB=∠C,∠B=∠B,∴△BED∽△BCA,∴,即,解得t=7;②当8<t<12时,则此时E点又经过t=7秒时的位置,此时t=8+1=9;综上可知t的值为4或7或9,故选:D.【点睛】本题主要考查相似三角形的判定和性质,用t表示出线段的长,化动为静,再根据相似三角形的对应边成比例找到关于t的方程是解决这类问题的基本思路.4、C【解析】试题分析:28000=1.1×1.故选C.考点:科学记数法—表示较大的数.5、B【分析】根据关于x的方程x2+3x+a=0有一个根为-2,可以设出另一个根,然后根据根与系数的关系可以求得另一个根的值,本题得以解决.【详解】∵关于x的方程x2+3x+a=0有一个根为-2,设另一个根为m,

∴-2+m=−,

解得,m=-1,

故选B.6、A【分析】设位似比例为k,先根据周长之比求出k的值,再根据点B的坐标即可得出答案.【详解】设位似图形的位似比例为k则和的周长之比为,即解得又点B的坐标为点的横坐标的绝对值为,纵坐标的绝对值为点位于第四象限点的坐标为故选:A.【点睛】本题考查了位似图形的坐标变换,依据题意,求出位似比例式解题关键.7、B【解析】过点O作OC⊥AB,垂足为C,则有AC=AB=×24=12,在Rt△AOC中,∠ACO=90°,AO=13,∴OC==5,即点O到AB的距离是5.8、B【分析】延长,交于,由,,即可得出答案.【详解】如图所示,延长CB交FG与点H∵四边形ABCD为平行四边形∴BC=AD=DF+AF=6cm,BC∥AD∴∠FAE=∠HBE又∵E是AB的中点∴AE=BE在△AEF和△BEH中∴△AEF≌△BEH(ASA)∴BH=AF=2cm∴CH=8cm∵BC∥CD∴∠FAG=∠HCG又∠FGA=∠CGH∴△AGF∽△CGH∴∴CG=4AG=12cm∴AC=AG+CG=15cm故答案选择B.【点睛】本题考查了全等三角形的判定以及相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解决本题的关键.9、C【分析】根据一元二次方程的定义即可求出答案.【详解】由题意可知:m+4≠0,∴m≠﹣4,故选:C.【点睛】本题考查一元二次方程,解题的关键是正确理解一元二次方程的定义,本题属于基础题型.10、D【分析】先根据平行四边形的性质,可得出OD、OC的长,再根据三角形三边长关系得出m的取值范围.【详解】∵四边形ABCD是平行四边形,AC=10,BD=12∴OC=5,OD=6∴在△OCD中,OD-OC<CD<OD+OC,即1<m<11故选:D.【点睛】本题考查平行四边形的性质和三角形三边长关系,解题关键是利用平行四边形的性质,得出OC和OD的长.二、填空题(每小题3分,共24分)11、【分析】先利用点A求出直线l的解析式,然后求出以B为圆心,半径为1的圆与直线l相切时点B的坐标,即b的值,从而确定以B为圆心,半径为1的圆与直线l有交点时b的取值范围.【详解】设直线l的解析式为∵动点A(m+2,3m+4)在直线l上,将点A代入直线解析式中得解得∴直线l解析式为y=3x﹣2如图,直线l与x轴交于点C(,0),交y轴于点A(0,﹣2)∴OA=2,OC=∴AC=若以B为圆心,半径为1的圆与直线l相切于点D,连接BD∴BD⊥AC∴sin∠BCD=sin∠OCA=∴∴∴以B为圆心,半径为1的圆与直线l相切时,B点坐标为或∴以B为圆心,半径为1的圆与直线l有交点,则b的取值范围是故答案为【点睛】本题主要考查直线与圆的位置关系,掌握锐角三角函数是解题的关键.12、或【分析】根据正方形的内角为90°,以及同角的余角相等得出三角形的两个角相等,从而推知△ABE∽△ECF,得出,代入数值得到关于CE的一元二次方程,求解即可.【详解】解:∵正方形ABCD,

∴∠B=∠C,∠BAE+∠BEA=90°,

∵EF⊥AE,

∴∠BEA+∠CEF=90°,

∴∠BAE=∠CEF,

∴△ABE∽△ECF,.解得,CE=或.故答案为:或.【点睛】考查了四边形综合题型,需要掌握三角形相似的判定与性质,正方形的性质以及一元二次方程的应用,解题的关键是根据相似三角形得出一元二次方程,难度不大.13、【分析】根据题意分别求出A,B,D三点的坐标,利用待定系数法求出抛物线的表达式,从而找到顶点,即可找到OE的高度.【详解】根据题意有∴设抛物线的表达式为将A,B,D代入得解得∴当时,故答案为:.【点睛】本题主要考查二次函数的最大值,掌握待定系数法是解题的关键.14、x1=1,x2=﹣1.【分析】先阅读题目,根据新运算得出(x+2)2﹣9=0,移项后开方,即可求出方程的解.【详解】解:(x+2)※9=0,(x+2)2﹣9=0,(x+2)2=9,x+2=±3,x1=1,x2=﹣1,故答案为x1=1,x2=﹣1.【点睛】此题主要考查一元二次方程的求解,解题的关键是根据题意列方程.15、y2<y1<y1【分析】根据反比例函数的比例系数的符号可得反比例函数所在象限为一、三,其中在第三象限的点的纵坐标总小于在第一象限的纵坐标,进而判断在同一象限内的点(﹣1,y1)和(,y2)的纵坐标的大小即可.【详解】解:∵反比例函数的比例系数为m2+1>0,∴图象的两个分支在一、三象限;∵第三象限的点的纵坐标总小于在第一象限的纵坐标,点(﹣1,y1)和(,y2)在第三象限,点(,y1)在第一象限,∴y1最小,∵﹣1<,y随x的增大而减小,∴y1>y2,∴y2<y1<y1.故答案为y2<y1<y1.【点睛】考查反比例函数图象上点的坐标特征;用到的知识点为:反比例函数的比例系数小于0,图象的2个分支在一、三象限;第三象限的点的纵坐标总小于在第一象限的纵坐标;在同一象限内,y随x的增大而减小.16、6【解析】根据得到a-b=1,由是一元二次方程的两个实数根结合完全平方公式得到,根据根与系数关系得到关于k的方程即可求解.【详解】∵,故a-b=1∵是一元二次方程的两个实数根,∴a+b=-5,ab=k,∴=1即25-4k=1,解得k=6,故填:6.【点睛】此题主要考查一元二次方程的应用,解题的关键是熟知因式分解、根与系数的关系运用.17、下直线x=1(1,2)【分析】根据y=a(x-h)2+k的性质即可得答案【详解】∵-3<0,∴抛物线的开口向下,∵y=﹣3(x﹣1)2+2是二次函数的顶点式,∴该抛物线的对称轴是直线x=1,顶点坐标为(1,2),故答案为:下,直线x=1,(1,2)【点睛】本题主要考查了二次函数的性质,熟练掌握二次函数的三种形式及性质是解题关键.18、4【分析】把、分别代入,可求得和的值,然后把求得的值代入计算即可.【详解】把、分别代入,得和-2=0,∴和,∴=(2-1)×(2+2)=4.故答案为4.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以一元二次方程的解也称为一元二次方程的根.三、解答题(共66分)19、(1)点A的坐标为(-1,0),点B的坐标为(3,0)(2)①5;②6.【分析】(1)根据x轴上的点的坐标特征即y=0,可得关于x的方程,解方程即可;(2)①直接写出从-1到3的整数的个数即可;②先确定新抛物线的解析式,进而可得其顶点坐标,再结合函数图象解答即可.【详解】解:(1)在中,令y=0,,解得:,∴点A的坐标为(-1,0),点B的坐标为(3,0);(2)①线段AB之间横、纵坐标都是整数的点有(-1,0)、(0,0)、(1,0)、(2,0)、(3,0).∴线段AB上一共有5个整点;②抛物线沿翻折,得到的新抛物线是,如图,其顶点坐标是(1,1),观察图象可知:线段AB上有5个整点,顶点为1个整点,新抛物线在轴上方的部分与线段所围成的区域内(包括边界)共6个整点.【点睛】本题考查了二次函数与x轴的交点坐标、二次函数的性质以及对新定义的理解应用,熟练掌握抛物线的基本知识、灵活运用数形结合的思想是解题的关键.20、(1)3.9米;(2)货车能安全通过.【解析】(1)过M作MN⊥AB于N,交BA的延长线于N,在Rt△OMN中,求出ON的长,即可求得BN的长,即可求得点M到地面的距离;(2)左边根据要求留0.65米的安全距离,即取CE=0.65,车宽EH=2.55,计算高GH的长即可,与3.5作比较,可得结论.【详解】(1)如图,过M作MN⊥AB于N,交BA的延长线于N,在Rt△OMN中,∠NOM=60°,OM=1.2,∴∠M=30°,∴ONOM=0.6,∴NB=ON+OB=3.3+0.6=3.9,即点M到地面的距离是3.9米;(2)取CE=0.65,EH=2.55,∴HB=3.9﹣2.55﹣0.65=0.7,过H作GH⊥BC,交OM于G,过O作OP⊥GH于P,∵∠GOP=30°,∴tan30°,∴GPOP0.404,∴GH=3.3+0.404=3.704≈3.70>3.5,∴货车能安全通过.【点睛】本题考查了解直角三角形的应用、锐角三角函数等知识,正确添加辅助线,构建直角三角形是解题的关键.21、.【分析】画出树状图,然后找到甲同学传给下一个同学后,这个同学再传给甲同学的结果数多即可得.【详解】由题意可画如下的树状图:由树状图可知,共有9种等可能性的结果,其中甲同学传给下一个同学后,这个同学再传给甲同学的结果有3种甲同学传给下一个同学后,这个同学再传给甲同学的概率.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.22、(1)y=x2﹣2x﹣3;(2)S=t2+t;(3)Q(,).【分析】(1)函数的表达式为:y=(x+1)(x﹣3),即可求解;(2)tan∠PCH===,求出OE=,利用S=S△NCE+S△NAC,即可求解;(3)证明△CNP≌△KRH,求出点P(4,5)确定tan∠QKP===4﹣m=tan∠QPK==NG,最后计算KT=MT=(),FT=4﹣(+),tan∠MFT==4﹣m,即可求解.【详解】(1)函数的表达式为:y=(x+1)(x﹣3)=x2﹣2x﹣3;(2)过点P作PH⊥y轴交于点H,设点P(t,t2﹣2t﹣3),CN=t2﹣2t﹣3+3=t2﹣2t,∴tan∠PCH===,,解得:OE=,S=S△NCE+S△NAC=AE×CN=t2+t;(3)过点K作KR⊥FH于点R,∵KH=CP,∠NCP=∠H,∠R=∠PNC=90°,∴△CNP≌△KRH,∴PN=KR=NS,∵点F是PC中点,SF∥NP,∴PN=KR=NS=CN,即t=(t2﹣2t﹣3+3),解得:t=0或4(舍去0),点P(4,5),点K、P时关于对称轴的对称点,故点K(﹣2,5),∵OE∥PN,则,故OE=,同理AE=,设点Q(m,m2﹣2m﹣3),过点Q作WQ⊥KP于点W,WQ=5﹣(m2﹣2m﹣3)=﹣m2+2m+8,WK=m+2,tan∠QKP===4﹣m=tan∠QPK==NG,则NG=8﹣2m,MP=AE+GN=(8﹣2m)=﹣m+,KM=KP﹣MP=,过点F作FL⊥KP于点L,点F(2,1),则FL=LK=4,则∠LKF=45°,∵∠MFK=∠PKQ,tan∠MFK=tan∠QKP=4﹣m,过点M作MT⊥FK于点T,则KT=MT=(),FT=4﹣(),tan∠MFT==4﹣m,解得:m=11或(舍去11),故点Q(,).【点睛】考查了二次函数综合运用,涉及到一次函数、三角形全等、图形的面积计算、解直角三角形等,其中(3),运用函数的观点,求解点的坐标.23、(18-6)米【分析】延长BA交过点F的水平线与点C,在Rt△BEF中求出BE的长,在Rt△ACF中求出BC的AC的长,即可求出树的高度.【详解】延长BA交过点F的水平线与点C,则四边形BCFE是矩形,∴BC=EF=米,BE=CF,∠EBF=∠BFC=45°,∴BE=EF=米,∴CF=18米,在Rt△ACF中,∵tan∠AFC=,∴AC=,∴AB=(18-)米.【点睛】本题考查解直角三角形的应用-仰角俯角问题,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会用构建方程的思想思考问题.24、(1);(2)【分析】(1)直接根据概率公式计算可得;(2)设这四瓶牛奶分别记为、、、,其中过期牛奶为,画树状图可得所有等可能结果,从所有等可能结果中找到抽出的2瓶牛奶中恰好抽到过期牛奶的结果数,再根据概率公式计算可得【详解】解:(1)任意抽取1瓶,抽到过期的一瓶的概率是,故答案为:;(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论