下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023学年高考数学模拟测试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合A,B=,则A∩B=A. B. C. D.2.若x∈(0,1),a=lnx,b=,c=elnx,则a,b,c的大小关系为()A.b>c>a B.c>b>a C.a>b>c D.b>a>c3.已知直线y=k(x﹣1)与抛物线C:y2=4x交于A,B两点,直线y=2k(x﹣2)与抛物线D:y2=8x交于M,N两点,设λ=|AB|﹣2|MN|,则()A.λ<﹣16 B.λ=﹣16 C.﹣12<λ<0 D.λ=﹣124.已知复数满足,则()A. B.2 C.4 D.35.中心在原点,对称轴为坐标轴的双曲线的两条渐近线与圆都相切,则双曲线的离心率是()A.2或 B.2或 C.或 D.或6.已知数列的前项和为,且,,则()A. B. C. D.7.设m,n为直线,、为平面,则的一个充分条件可以是()A.,, B.,C., D.,8.刘徽是我国魏晋时期伟大的数学家,他在《九章算术》中对勾股定理的证明如图所示.“勾自乘为朱方,股自乘为青方,令出入相补,各从其类,因就其余不移动也.合成弦方之幂,开方除之,即弦也”.已知图中网格纸上小正方形的边长为1,其中“正方形为朱方,正方形为青方”,则在五边形内随机取一个点,此点取自朱方的概率为()A. B. C. D.9.如图,棱长为的正方体中,为线段的中点,分别为线段和棱上任意一点,则的最小值为()A. B. C. D.10.己知函数若函数的图象上关于原点对称的点有2对,则实数的取值范围是()A. B. C. D.11.函数的部分图象大致为()A. B.C. D.12.如图,平面四边形中,,,,为等边三角形,现将沿翻折,使点移动至点,且,则三棱锥的外接球的表面积为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数的部分图象如图所示,则的值为____________.14.如图,椭圆:的离心率为,F是的右焦点,点P是上第一角限内任意一点,,,若,则的取值范围是_______.15.某公园划船收费标准如表:某班16名同学一起去该公园划船,若每人划船的时间均为1小时,每只租船必须坐满,租船最低总费用为______元,租船的总费用共有_____种可能.16.将底面直径为4,高为的圆锥形石块打磨成一个圆柱,则该圆柱的侧面积的最大值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数存在一个极大值点和一个极小值点.(1)求实数a的取值范围;(2)若函数的极大值点和极小值点分别为和,且,求实数a的取值范围.(e是自然对数的底数)18.(12分)已知抛物线的焦点也是椭圆的一个焦点,与的公共弦的长为.(1)求的方程;(2)过点的直线与相交于、两点,与相交于、两点,且与同向,设在点处的切线与轴的交点为,证明:直线绕点旋转时,总是钝角三角形;(3)为上的动点,、为长轴的两个端点,过点作的平行线交椭圆于点,过点作的平行线交椭圆于点,请问的面积是否为定值,并说明理由.19.(12分)某商场为改进服务质量,在进场购物的顾客中随机抽取了人进行问卷调查.调查后,就顾客“购物体验”的满意度统计如下:满意不满意男女是否有的把握认为顾客购物体验的满意度与性别有关?若在购物体验满意的问卷顾客中按照性别分层抽取了人发放价值元的购物券.若在获得了元购物券的人中随机抽取人赠其纪念品,求获得纪念品的人中仅有人是女顾客的概率.附表及公式:.20.(12分)已知集合,.(1)若,则;(2)若,求实数的取值范围.21.(12分)中,内角的对边分别为,.(1)求的大小;(2)若,且为的重心,且,求的面积.22.(10分)记为数列的前项和,已知,等比数列满足,.(1)求的通项公式;(2)求的前项和.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【答案解析】
先解A、B集合,再取交集。【题目详解】,所以B集合与A集合的交集为,故选A【答案点睛】一般地,把不等式组放在数轴中得出解集。2、A【答案解析】
利用指数函数、对数函数的单调性直接求解.【题目详解】∵x∈(0,1),∴a=lnx<0,b=()lnx>()0=1,0<c=elnx<e0=1,∴a,b,c的大小关系为b>c>a.故选:A.【答案点睛】本题考查三个数的大小的判断,考查指数函数、对数函数的单调性等基础知识,考查运算求解能力,是基础题.3、D【答案解析】
分别联立直线与抛物线的方程,利用韦达定理,可得,,然后计算,可得结果.【题目详解】设,联立则,因为直线经过C的焦点,所以.同理可得,所以故选:D.【答案点睛】本题考查的是直线与抛物线的交点问题,运用抛物线的焦点弦求参数,属基础题。4、A【答案解析】
由复数除法求出,再由模的定义计算出模.【题目详解】.故选:A.【答案点睛】本题考查复数的除法法则,考查复数模的运算,属于基础题.5、A【答案解析】
根据题意,由圆的切线求得双曲线的渐近线的方程,再分焦点在x、y轴上两种情况讨论,进而求得双曲线的离心率.【题目详解】设双曲线C的渐近线方程为y=kx,是圆的切线得:,得双曲线的一条渐近线的方程为∴焦点在x、y轴上两种情况讨论:
①当焦点在x轴上时有:②当焦点在y轴上时有:∴求得双曲线的离心率2或.
故选:A.【答案点睛】本小题主要考查直线与圆的位置关系、双曲线的简单性质等基础知识,考查运算求解能力,考查数形结合思想.解题的关键是:由圆的切线求得直线的方程,再由双曲线中渐近线的方程的关系建立等式,从而解出双曲线的离心率的值.此题易忽视两解得出错误答案.6、C【答案解析】
根据已知条件判断出数列是等比数列,求得其通项公式,由此求得.【题目详解】由于,所以数列是等比数列,其首项为,第二项为,所以公比为.所以,所以.故选:C【答案点睛】本小题主要考查等比数列的证明,考查等比数列通项公式,属于基础题.7、B【答案解析】
根据线面垂直的判断方法对选项逐一分析,由此确定正确选项.【题目详解】对于A选项,当,,时,由于不在平面内,故无法得出.对于B选项,由于,,所以.故B选项正确.对于C选项,当,时,可能含于平面,故无法得出.对于D选项,当,时,无法得出.综上所述,的一个充分条件是“,”故选:B【答案点睛】本小题主要考查线面垂直的判断,考查充分必要条件的理解,属于基础题.8、C【答案解析】
首先明确这是一个几何概型面积类型,然后求得总事件的面积和所研究事件的面积,代入概率公式求解.【题目详解】因为正方形为朱方,其面积为9,五边形的面积为,所以此点取自朱方的概率为.故选:C【答案点睛】本题主要考查了几何概型的概率求法,还考查了数形结合的思想和运算求解的能力,属于基础题.9、D【答案解析】
取中点,过作面,可得为等腰直角三角形,由,可得,当时,最小,由,故,即可求解.【题目详解】取中点,过作面,如图:则,故,而对固定的点,当时,最小.此时由面,可知为等腰直角三角形,,故.故选:D【答案点睛】本题考查了空间几何体中的线面垂直、考查了学生的空间想象能力,属于中档题.10、B【答案解析】
考虑当时,有两个不同的实数解,令,则有两个不同的零点,利用导数和零点存在定理可得实数的取值范围.【题目详解】因为的图象上关于原点对称的点有2对,所以时,有两个不同的实数解.令,则在有两个不同的零点.又,当时,,故在上为增函数,在上至多一个零点,舍.当时,若,则,在上为增函数;若,则,在上为减函数;故,因为有两个不同的零点,所以,解得.又当时,且,故在上存在一个零点.又,其中.令,则,当时,,故为减函数,所以即.因为,所以在上也存在一个零点.综上,当时,有两个不同的零点.故选:B.【答案点睛】本题考查函数的零点,一般地,较为复杂的函数的零点,必须先利用导数研究函数的单调性,再结合零点存在定理说明零点的存在性,本题属于难题.11、B【答案解析】
图像分析采用排除法,利用奇偶性判断函数为奇函数,再利用特值确定函数的正负情况。【题目详解】,故奇函数,四个图像均符合。当时,,,排除C、D当时,,,排除A。故选B。【答案点睛】图像分析采用排除法,一般可供判断的主要有:奇偶性、周期性、单调性、及特殊值。12、A【答案解析】
将三棱锥补形为如图所示的三棱柱,则它们的外接球相同,由此易知外接球球心应在棱柱上下底面三角形的外心连线上,在中,计算半径即可.【题目详解】由,,可知平面.将三棱锥补形为如图所示的三棱柱,则它们的外接球相同.由此易知外接球球心应在棱柱上下底面三角形的外心连线上,记的外心为,由为等边三角形,可得.又,故在中,,此即为外接球半径,从而外接球表面积为.故选:A【答案点睛】本题考查了三棱锥外接球的表面积,考查了学生空间想象,逻辑推理,综合分析,数学运算的能力,属于较难题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】
由图可得的周期、振幅,即可得,再将代入可解得,进一步求得解析式及.【题目详解】由图可得,,所以,即,又,即,,又,故,所以,.故答案为:【答案点睛】本题考查由图象求解析式及函数值,考查学生识图、计算等能力,是一道中档题.14、【答案解析】
由于点在椭圆上运动时,与轴的正方向的夹角在变,所以先设,又由,可知,从而可得,而点在椭圆上,所以将点的坐标代入椭圆方程中化简可得结果.【题目详解】设,,,则,由,得,代入椭圆方程,得,化简得恒成立,由此得,即,故.故答案为:【答案点睛】此题考查的是利用椭圆中相关两个点的关系求离心率,综合性强,属于难题.15、36010【答案解析】
列出所有租船的情况,分别计算出租金,由此能求出结果.【题目详解】当租两人船时,租金为:元,当租四人船时,租金为:元,当租1条四人船6条两人船时,租金为:元,当租2条四人船4条两人船时,租金为:元,当租3条四人船2条两人船时,租金为:元,当租1条六人船5条2人船时,租金为:元,当租2条六人船2条2人船时,租金为:元,当租1条六人船1条四人船3条2人船时,租金为:元,当租1条六人船2条四人船1条2人船时,租金为:元,当租2条六人船1条四人船时,租金为:元,综上,租船最低总费用为360元,租船的总费用共有10种可能.故答案为:360,10.【答案点睛】本小题主要考查分类讨论的数学思想方法,考查实际应用问题,属于基础题.16、【答案解析】
由题意欲使圆柱侧面积最大,需使圆柱内接于圆锥.设圆柱的高为h,底面半径为r,则,将侧面积表示成关于的函数,再利用一元二次函数的性质求最值.【题目详解】欲使圆柱侧面积最大,需使圆柱内接于圆锥.设圆柱的高为h,底面半径为r,则,所以.∴,当时,的最大值为.故答案为:.【答案点睛】本题考查圆柱的侧面积的最值,考查函数与方程思想、转化与化归思想、,考查空间想象能力和运算求解能力,求解时注意将问题转化为函数的最值问题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【答案解析】
(1)首先对函数求导,根据函数存在一个极大值点和一个极小值点求出a的取值范围;(2)首先求出的值,再根据求出实数a的取值范围.【题目详解】(1)函数的定义域为是,,若有两个极值点,则方程一定有两个不等的正根,设为和,且,所以解得,此时,当时,,当时,,当时,,故是极大值点,是极小值点,故实数a的取值范围是;(2)由(1)知,,,则,,,由,得,即,令,考虑到,所以可化为,而,所以在上为增函数,由,得,故实数a的取值范围是.【答案点睛】本题主要考查了利用导数研究函数的极值点和单调性,利用函数单调性证明不等式,属于难题.18、(1);(2)证明见解析;(3)是,理由见解析.【答案解析】
(1)根据两个曲线的焦点相同,得到,再根据与的公共弦长为得出,可求出和的值,进而可得出曲线的方程;(2)设点,根据导数的几何意义得到曲线在点处的切线方程,求出点的坐标,利用向量的数量积得出,则问题得以证明;(3)设直线,直线,、、,推导出以及,求出和,通过化简计算可得出为定值,进而可得出结论.【题目详解】(1)由知其焦点的坐标为,也是椭圆的一个焦点,,①又与的公共弦的长为,与都关于轴对称,且的方程为,由此易知与的公共点的坐标为,,②联立①②,得,,故的方程为;(2)如图,,由得,在点处的切线方程为,即,令,得,即,,而,于是,因此是锐角,从而是钝角.故直线绕点旋转时,总是钝角三角形;(3)设直线,直线,、、,则,设向量和的夹角为,则的面积为,由,可得,同理可得,故有.又,故,则,因此,的面积为定值.【答案点睛】本题考查了圆锥曲线的和直线的位置与关系,考查钝角三角形的判定以及三角形面积为定值的求解,关键是联立方程,构造方程,利用韦达定理,以及向量的关系,得到关于斜率的方程,计算量大,属于难题.19、有的把握认为顾客购物体验的满意度与性别有关;.【答案解析】
由题得,根据数据判断出顾客购物体验的满意度与性别有关;获得了元购物券的人中男顾客有人,记为,;女顾客有人,记为,,,.从中随机抽取人,所有基本事件有个,其中仅有1人是女顾客的基本事件有个,进而求出获得纪念品的人中仅有人是女顾客的概率.【题目详解】解析:由题得所以,有的把握认为顾客购物体验的满意度与性别有关.获得了元购物券的人中男顾客有人,记为,;女顾客有人,记为,,,.从中随机抽取人,所有基本事件有:,,,,,,,,,,,,,,,共个.其中仅有1人是女顾客的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房屋建筑工程保修合同协议书范本(2024版)6篇
- 科学计算语言Julia及MWORKS实践 课件 20-极坐标图
- 进修学习护理总结出科
- 2024年幼儿园保育主任年度考核个人总结范文
- 2024月底工作总结
- 胆道感染的护理查房
- 翻译三级笔译实务模拟57
- 讲解眼科手术
- 人音版音乐七年级上册《在希望的田野上》课件
- 玉林师范学院《课程与教学论》2022-2023学年第一学期期末试卷
- 研学日游活动方案及流程
- 基于“钻石模型”的重庆柑橘产业发展研究的开题报告
- 电梯维修保养内容及标准
- 湖北银行2023年校园招聘笔试历年难、易错考点试题含答案解析
- 交通银行交银金融科技有限公司校园2023年招聘30人笔试历年难、易错考点试题含答案附详解
- 记叙文写作教学公开课一等奖市赛课获奖课件
- 2.PaleoScan详细操作流程
- 国土空间生态修复规划山水林田湖草
- 家禽生理结构-家禽的内脏器官解剖(动物解剖生理)
- 矿山开采与土地复垦
- 中国现当代文学知到章节答案智慧树2023年哈尔滨学院
评论
0/150
提交评论