SPSS非参数检验课件_第1页
SPSS非参数检验课件_第2页
SPSS非参数检验课件_第3页
SPSS非参数检验课件_第4页
SPSS非参数检验课件_第5页
已阅读5页,还剩215页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第7章SPSS非参数检验

前面进行的假设检验和方差分析,大都是在数据服从正态分布或近似地服从正态分布的条件下进行的。但是如果总体的分布未知,如何进行总体参数的检验,或者如何检验总体服从一个指定的分布,都可以归结为非参数检验方法。第7章SPSS非参数检验前面进行的假设检验和方差本章主要内容单样本的非参数检验两独立样本非参数检验两配对样本非参数检验多独立样本非参数检验多配对样本非参数检验本章主要内容单样本的非参数检验第一节单样本的非参数检验总体分布的卡方检验二项分布检验单样本K-S检验变量值随机性检验第一节单样本的非参数检验总体分布的卡方检验总体分布的卡方检验

总体分布的卡方检验是一种对总体分布进行检验的极为典型的非参数检验方法。

eg:在一个正20面体的各面上分别标有0~9十个数字,每个数字在两个面上标出。若把该20面体投掷一些次数后,若检验每个数字出现的概率是否大致相同,则需用卡方检验。概念总体分布的卡方检验概念

将总体的取值范围分成有限个互不相容的子集,从总体中抽取一个样本,考察样本观察值落到每个子集中的实际频数,并按假设的总体分布计算每个子集的理论频数,最后根据实际频数和理论频数的差构造卡方统计量,即当原假设成立时,统计量服从卡方分布。以此来检验假设总体的分布是否成立。基本思想将总体的取值范围分成有限个互不相容的子集,从决策情况:如果的概率,则应拒绝原假设,即认为样本来自的总体分布与期望分布或某一理论分布存在显著差异;反之,则不存在显著差异。决策情况:基本操作及应用举例(以心脏病猝死.sav为例)分析非参数检验卡方基本操作及应用举例分析第7章-SPSS非参数检验课件输入检验变量输入理论(期望)分布值输入检验变量输入理论(期望)分布值第7章-SPSS非参数检验课件因为卡方对应的概率P值大于0.05,所以差异不显著,即认为样本来自的总体分布与指定的理论分布无显著差异因为卡方对应的概率P值大于0.05,二项分布检验

SPSS的二项分布检验正是通过样本数据检验样本来自的总体是否服从指定概率值为P的二项分布,其原假设为样本来自的总体与指定的二项分布无显著差异。概念二项分布检验概念SPSS二项分布检验,在小样本中采用精确检验方法,对于大样本则采用近似检验方法。精确检验方法计算n次试验中成功出现的次数小于等于x次的概率,即在大样本下,采用近似检验,用Z检验统计量,即基本思想SPSS二项分布检验,在小样本中采用精确检验方法,对于大样本决策情况:如果上述两种情况下的概率P值小于显著性水平,则应拒绝原假设,即认为样本来自的总体分布与指定的二项分布存在显著差异;反之,则不存在显著差异。决策情况:二项分布检验的基本操作与应用(以产品合格率.sav为例)分析非参数检验二项式二项分布检验的基本操作与应用分析输入检验概率值输入检验概率值第7章-SPSS非参数检验课件由于概率P大于0.05,所以不能拒绝原假设,即认为一级品率不低于0.9由于概率P大于0.05,所以不能拒绝原假设,即认为一级品率不K-S检验(Kolmogorow-Smirnov),该方法能够利用样本数据推断样本来自总体是否与某一个理论分布有显著差异,是一种拟合优度的检验方法,适用于探索连续型随机变量的分布。概念单样本K-S检验概念单样本K-S检验

正态分布

均匀分布指数分布

泊松分布理论分布类型正态分布理在原假设成立的前提下,计算各样本观测值在理论分布中出现的理论概率值F(x)计算各样本观测值的实际累计概率值S(x);计算实际累计概率值与理论累计概率值的差S(x)-F(x)计算差值序列中的最大绝对差值,即修正的D为基本思想在原假设成立的前提下,计算各样本观测值在理论分布中出现的理论决策情况:如果D统计量的概率P值小于显著性水平,则应拒绝原假设,即认为样本来自的总体分布与指定的分布存在显著差异;反之,则不存在显著差异。决策情况:单样本K-S检验的基本操作与应用举例以儿童身高.sav为例分析非参数检验1-样本K-S单样本K-S检验的基本操作与应用举例分析第7章-SPSS非参数检验课件正态分布正态分布第7章-SPSS非参数检验课件由于概率P大于0.05,所以不能拒绝原假设,即认为周岁儿童身高的总体分布与正态分布无显著差异由于概率P大于0.05,所以不能拒绝原假设,即认为周岁儿童身P-P图P-P图Q-Q图Q-Q图

单样本K-S检验的基本操作与应用举例以储户存款金额总体的分布检验为例

单样本K-S检验的基本操作与应用举例概率P小于0.05,所以拒绝原假设,即认为储户存款金额总体分布不服从正态分布概率P小于0.05,所以拒绝原假设,即认为储户存款金额总体分变量值随机性检验

概念:通过对样本变量值的分析,实现对总体变量值出现是否随机进行检验。基本思想:利用游程大小进行判断。

游程是指变量值序列中连续出现相同的值的次数检验统计量:

其中,基本思想变量值随机性检验

基本思想变量值随机性检验的SPSS操作

以耐电压值.sav为例变量值随机性检验的SPSS操作

以耐电压值.sav为例第7章-SPSS非参数检验课件因为概率P值大于0.05,所以不能拒绝原假设,即认为该设备是正常工作的因为概率P值大于0.05,所以不能拒绝原假设,即认为该设备是练习1.在一个正20面体的各面上分别标出0~9个数字,每个数字在两个面上标出,现将它投掷805次,得出各数字朝上的次数。数据放在Frequncy.sav文件中,试检验其均匀性。2.试着检验抛硬币实验中,正面出现的概率是否为1/2.数据在硬币结果.sav中。3.试着检验10个电子元件的使用寿命分布是否服从指数分布?数据在电子元件使用寿命.sav中。练习1.在一个正20面体的各面上分别标出0~9个数字,每个数4.现有抛掷一枚硬币66次所得结果保存在数据文件硬币结果.sav中,请检验该实验是否是随机性实验。4.现有抛掷一枚硬币66次所得结果保存在数据文件硬币结果.第二节两独立样本的非参数检验如果两个无联系总体的分布是未知的,则检验两个总体的分布是否有显著差异的方法是一种非参数检验方法,或者称为两个独立样本的检验。检验是通过两个总体中分别抽取的随机样本数据进行的。概念第二节两独立样本的非参数检验概念

曼-惠特尼U检验

K-S检验

w-w游程检验

极端反应检验方法方法方法一:两独立样本的曼-惠特尼

U检验概念

通过对两组独立样本平均秩的研究来推断它们来自的两个总体分布有无显著差异。检验的基本步骤首先将两组样本数据(X1,X2,…Xn)和(Y1,Y2,…Yn

)混合并按升序排序,得到每个数据各自的秩Ri基本思想方法一:两独立样本的曼-惠特尼

U检验基本思想分别对两组样本的秩求平均,得到两个平均秩Wx/m和WY/m,然后比较它们的大小,若差值较大,说明原假设很可能不成立。计算两个样本各自优先于对方的秩的个数U1、U2,即然后对U1、U2大小进行比较,若它们相差较大时,则有必要怀疑原假设的真实性。计算WilcoxonW统计量,其为上述U1、U2较小者所对应的秩和分别对两组样本的秩求平均,得到两个平均秩Wx/m和WY/m,计算曼-惠特尼U统计量,小样本下,U统计量服从Mann-Whitney分布即大样本下,U统计量近似服从正态分布计算曼-惠特尼U统计量,统计决策在小样本下,依据U统计量的概率P值进行决策;在大样本下,则依据Z统计量的概率P值进行决策。若概率P值小于显著性水平,则拒绝原假设,即认为样本来自的两总体分布存在显著差异;反之,则差异不显著。具体计算举例以课本P199页数据为例统计决策具体计算举例以课本P199页数据为例曼-惠特尼U检验SPSS基本操作(以两独立样本使用寿命为例)分析非参数检验2个独立样本曼-惠特尼U检验SPSS基本操作分析第7章-SPSS非参数检验课件由于本题中涉及是小样本,因此采用U检验,相应概率为精确概率,由于0.04小于0.05,所以拒绝原假设,所以认为两种工艺下产品使用寿命的分步存在显著差异由于本题中涉及是小样本,因此采用U检验,相应概率为精确概率,方法二:两独立样本K-S检验概念

K-S检验不仅能够对单个总体的分布是否与某一理论分布存在显著差异进行检验,还可以对两个总体的分布是否存在差异进行检验基本思想方法二:两独立样本K-S检验基本思想基本思想同前面单样本K-S检验,但也有些不同,就是分析的对象是变量值的秩。基本步骤首先,将两组样本混合并按升序排序然后,分别计算两组样本秩的累计频数和累计频率。最后,计算两组累计频率的差,得到秩的差值序列并得到D统计量,根据D统计量得出的概率P与显著性水平大小进行比较判断。基本思想同前面单样本K-S检验,但也有些不同,就是分析的对象两独立样本K-S检验SPSS基本操作(以两独立样本-使用寿命为例)两独立样本K-S检验SPSS基本操作第7章-SPSS非参数检验课件方法三:两独立样本的游程检验该方法的基本思想与单样本游程检验的基本相同,不同的是计算游程数的方法。两独立样本的游程数依赖于变量的秩。

首先,将两组样本混合并按升序排序,在变量值排序的同时,对应的组标记值也会随之重新排列然后,对组标记值序列按前面的计算游程的方法进行计算游程数。若游程数较少,则说明两总体有较大差异。反之,则差异不大。基本思想方法三:两独立样本的游程检验基本思想

根据游程数计算Z统计量最后,进行统计决策。根据游程数计算Z统计量最后,进行统计决策。两独立样本的游程检验SPSS的基本操作(以两独立样本-使用寿命为例)两独立样本的游程检验SPSS的基本操作第7章-SPSS非参数检验课件方法四:两独立样本的

极端反应检验将一组样本作为控制样本,另一组样本作为实验样本,以控制样本作为对照,检验实验样本相对于控制样本是否出现了极端反应。如果实验样本没有出现极端反应,则认为两总体分布无显著差异;反之则差异显著。基本思想方法四:两独立样本的

极端反应检验基本思想具体分析过程:首先,将两组样本混合按升序排序然后,求出控制样本的最小秩Qmin

和最大秩Qmax,并计算出跨度S=Qmax-Qmin+1

接着,

为消除样本数据中极端值对分析结果的影响,计算跨度之前可按比例去除控制样本中部分靠近两端的样本值,然后再求跨度,得到截头跨度。具体分析过程:极端反应注重对跨度和截头跨度的分析。针对跨度或截头跨度计算的H检验统计量为:小样本下,H统计量服从Hollander分布;大样本下,H统计量近似服从正态分布。最后,进行统计决策。极端反应注重对跨度和截头跨度的分析。针对跨度或截头跨度计算的两独立样本的极端反应检验SPSS的基本操作(以两独立样本-使用寿命为例)两独立样本的极端反应检验SPSS的基本操作第7章-SPSS非参数检验课件应用举例(以城镇和农村储户存款金额比较为例)应用举例(以城镇和农村储户存款金额比较为例)第7章-SPSS非参数检验课件第7章-SPSS非参数检验课件

双样本Kolmogorov-Smirnov检验

双样本Kolmogorov-Smirnov检验

Wald-Wolfowitz检验

Wald-Wolfowitz检验

练习题现有数据关于患者服用两种不同安眠药后睡眠时间延长情况,请用四种不同方法来检验两种不同安眠药对睡眠时间延长分布是否有显著差异?练习题现有数据关于患者服用两种不同安眠药后睡眠时间延长情况,第三节多独立样本的非参数检验中位数检验Kruskal-Wallis检验Jonckheere-Terpstra检验城市身高样本数据北京79,75,78,76,72上海72,71,74,74,73成都76,78,78,77,75广州70,72,71,71,69四城市周岁儿童身高样本数据第三节多独立样本的非参数检验城市身高样本数据北京79,75,中位数检验概念:通过对多组独立样本的分析,检验它们来自的总体的中位数是否存在显著差异。基本思想:如果多个总体的中位数没有显著差异,那么这个共同的中位数应在各样本组中均处在中间位置上。基本思想中位数检验基本思想分析步骤:首先,将多组样本混合按升序排序,并求出混合样本的中位数。然后,分别计算各组样本中大于和小于上述中位数的样本个数,形成列联表。接着,利用卡方检验方法分析各组样本来自的总体对于上述中位数的分布是否一致。如果各组中大于(或小于)上述中位数的样本比例大致相同,则可认为多组样本有共同的中位数,它们来自的总体的中位数没有显著差异。反之,则有显著差异。最后,进行统计决策。分析步骤:计算示例计算示例多独立样本的中位数检验SPSS基本操作以儿童身高.sav为例分析非参数检验K个独立样本多独立样本的中位数检验SPSS基本操作分析第7章-SPSS非参数检验课件因为概率P小于0.05,所以拒绝原假设,即认为四个不同城市的儿童身高的中位数有显著差异因为概率P小于0.05,所以拒绝原假设,即认为四个不同城市的Kruskal-Wallis检验概念:检验实质是两独立样本的曼-惠特尼检验在多个独立样本下的推广,用于检验多个总体的分布是否存在显著差异。基本思想:首先,将多组样本数据混合并按升序排序,求出各变量值的秩.基本思想Kruskal-Wallis检验基本思想其次,考察各组秩的均值是否存在显著差异。构造K-W检验统计量为:最后,根据K-W统计量相应的概率P值与显著性水平大小进行比较,作出决策。其次,考察各组秩的均值是否存在显著差异。构造K-W检验统计量多独立样本的Kruskal-Wallis检验的SPSS操作以儿童身高.sav为例多独立样本的Kruskal-Wallis检验的SPSS操作因为概率P值小于0.05,所以拒绝原假设,即认为四个城市的周岁儿童身高的平均秩差异是显著的,总体分布是存在显著差异的因为概率P值小于0.05,所以拒绝原假设,即认为四个城市的周Jonckheere-Terpstra检验概念:用于检验多个独立样本来自的多个总体的分布是否存在显著差异的非参数检验方法。基本思想:同两独立样本的曼-惠特尼U检验类似,也是计算一组样本的观察值小于其他组样本观察值的个数。基本思想Jonckheere-Terpstra检验基本思想小样本下,构造的J-T统计量为:大样本下,构造的Z统计量为:最后,根据统计量得到的概率P值与显著性水平大小进行比较,作出决策小样本下,构造的J-T统计量为:最后,根据统计量得到的概率P多独立样本的Jonckheere-Terpstra检验的SPSS操作以儿童身高.sav为例多独立样本的Jonckheere-Terpstra检验的SP第7章-SPSS非参数检验课件练习现有不同地区不同性质工作的职工工资数据保存在文件“职工工资.sav”中,如果定义一个分组变量,将我国东部、中部和西部各省标上1,2,3作为分组值,下面来考察东部、中部和西部的职工平均工资是否存在显著差异(α=0.05)?练习现有不同地区不同性质工作的职工工资数据保存在文件“职工工

两配对样本的非参数检验是在对总体分布不甚了解的情况下,通过对两组配对样本的分析,推断样本来自的两个总体的分布是否存在显著差异的方法。第四节两配对样本的非参数检验概念

第四节两配对样本的非参数检验概念

Mcnemar

符号检验

Wilcoxon符号检验方法方法方法一:两配对样本的Mcnemar方法

McNemar检验是一种变化显著性检验,它将研究对象自身作为对照者检验其“前后”的变化是否显著。其原假设是两配对样本来自的两总体的分布无显著性差异。基本思想

该方法主要针对服从二项分布的变量,因此如果变量不是二项分布,还要先对数据进行转化,然后再检验。因此有一定的局限性方法一:两配对样本的Mcnemar方法基本思想该方法主分析非参数检验2个相关样本SPSS基本操作(以统计学.sav为例)分析SPSS基本操作(以统计学.sav为例)第7章-SPSS非参数检验课件因为概率P大于0.05,所以不能拒绝原假设,即认为学习统计学前后学生对其重要性认识没有发生显著变化因为概率P大于0.05,所以不能拒绝原假设,即认为学习统计学方法二:两配对样本符号检验其检验方法与McNemar检验有类似的解决思路,且利用正负号的个数实现检验。基本步骤为:

首先,分别用第二组样本的各个观察值减去第一组样本的对应观察值。差值为正则记为正号,为负则记为负号;然后,将正号的个数与负号的个数进行比较。基本思想方法二:两配对样本符号检验基本思想若两种符号个数大致相同,则认为两组配对样本的数据分布差距较小;反之,则差距较大。检验方法仍然采用二项分布检验方法。若两种符号个数大致相同,则认为两组配对样本的数据分布差距较小SPSS基本操作(以训练成绩.sav为例)SPSS基本操作(以训练成绩.sav为例)由于概率P值大于0.05,因此不能拒绝原假设,即认为训练前后的成绩分布没有显著差异,也就是新方法效果不显著由于概率P值大于0.05,因此不能拒绝原假设,即认为训练前后方法三:两配对样本Wilcoxon符号秩检验首先,按照符号检验的方法,用正负号分别表示两组对应样本数据差值情况。然后,将差值变量进行升序排序,并求出差值变量的秩。分别计算正号秩及统计量W+

和负号秩及统计量W-基本思想方法三:两配对样本Wilcoxon符号秩检验基本思想第7章-SPSS非参数检验课件小样本下,检验统计量为:

W=min(W+

,W-)大样本下,检验统计量为:最后,进行统计决策小样本下,检验统计量为:最后,进行统计决策SPSS基本操作(以训练成绩.sav为例)SPSS基本操作(以训练成绩.sav为例)因为概率P值大于显著性水平0.05,所以不能拒绝原假设,认为训练前后的成绩分布没有显著差异,即新方法效果不显著因为概率P值大于显著性水平0.05,所以不能拒绝原假设,认为练习

一车间为了提高工作效率,对某种零件的加工过程进行改进,为了比较加工时间是否明显减少,抽取15名工人对比他们改革前后零件的加工时间,得到相应的数据存放在“改进前后零件加工时间.sav”中,试根据数据检验改进后零件的加工时间是否明显减少(α=0.05)?采用两配对样本符号检验和两配对样本Wilcoxon符号秩检验方法练习一车间为了提高工作效率,对某种零件的加工过程进行改第五节多配对样本的非参数检验多配对样本的非参数检验是通过分析多组配对样本数据,推断样本来自的多个总体的中位数或分布是否存在显著差异。Eg:对多个评委对同一批歌手比赛打分标准是否一致。概念第五节多配对样本的非参数检验概念

Friedman检验

CochranQ检验

Kendall协同系数检验方法Friedma方法一:多配对样本的Friedman检验概念:多配对样本的Friedman检验是利用秩实现对多个总体分布是否存在显著差异的非参数检验方法。基本思想:

比较每种处理下秩总和是否相等,即是否有或存在来大体比较多个总体分布是否有显著差异。但具体比较还要通过构造检验统计量来进行。

方法一:多配对样本的Friedman检验概念:多配对样本的F方法一SPSS基本操作

(以促销方式.sav为例)分析非参数检验K个相关样本方法一SPSS基本操作

(以促销方式.sav为例)分析第7章-SPSS非参数检验课件因为概率P小于显著性水平0.05,所以拒绝原假设,即认为三种不同促销方式下的销售额数据的分布存在显著差异因为第二种促销形式下的秩均值最大,因此促销效果最好因为概率P小于显著性水平0.05,所以拒绝原假设,即认为三种方法二:多配对样本的CochranQ检验概念:通过对多个配对样本的分析,推断样本来自的多个总体的分布是否存在显著差异。基本思想:主要针对二值变量的,因此不进行秩的计算,构造Q检验统计量:最后进行统计决策方法二:多配对样本的CochranQ检验概念:通过对多个配方法一SPSS基本操作

(以航空公司.sav为例)方法一SPSS基本操作

(以航空公司.sav为例)因为概率P小于0.05,所以拒绝原假设,认为三家航空公司的服务水平存在显著差异。因为甲航空公司得到乘客满意的人数最多,因此其服务水平最高因为概率P小于0.05,所以拒绝原假设,认为三家航空公司的服方法三:多配对样本的Kendall协同系数检验概念:也是一种多配对样本的非参数检验方法,与Friedman检验方法结合,可方便实现对评判者的评判标准是否一致的判断,其原假设是评判者的评判标准不一致。基本思想:分析还依赖于秩的大小比较。协同系数方法三:多配对样本的Kendall协同系数检验概念:也是一种最后,进行统计决策若根据W计算得概率,则拒绝原假设,即认为评判者的评判标准一致;若,则不能拒绝原假设,即认为评判者的标准不一致。最后,进行统计决策方法三SPSS基本操作(以评委打分.sav为例)方法三SPSS基本操作(以评委打分.sav为例)因为概率P小于0.05,所以拒绝原假设,即认为各歌手得分的平均秩存在显著差异W协同系数0.955,非常接近1,所以评委的评分标准是一致的因为概率P小于0.05,所以拒绝原假设,即认为各歌手得分的平第7章SPSS非参数检验

前面进行的假设检验和方差分析,大都是在数据服从正态分布或近似地服从正态分布的条件下进行的。但是如果总体的分布未知,如何进行总体参数的检验,或者如何检验总体服从一个指定的分布,都可以归结为非参数检验方法。第7章SPSS非参数检验前面进行的假设检验和方差本章主要内容单样本的非参数检验两独立样本非参数检验两配对样本非参数检验多独立样本非参数检验多配对样本非参数检验本章主要内容单样本的非参数检验第一节单样本的非参数检验总体分布的卡方检验二项分布检验单样本K-S检验变量值随机性检验第一节单样本的非参数检验总体分布的卡方检验总体分布的卡方检验

总体分布的卡方检验是一种对总体分布进行检验的极为典型的非参数检验方法。

eg:在一个正20面体的各面上分别标有0~9十个数字,每个数字在两个面上标出。若把该20面体投掷一些次数后,若检验每个数字出现的概率是否大致相同,则需用卡方检验。概念总体分布的卡方检验概念

将总体的取值范围分成有限个互不相容的子集,从总体中抽取一个样本,考察样本观察值落到每个子集中的实际频数,并按假设的总体分布计算每个子集的理论频数,最后根据实际频数和理论频数的差构造卡方统计量,即当原假设成立时,统计量服从卡方分布。以此来检验假设总体的分布是否成立。基本思想将总体的取值范围分成有限个互不相容的子集,从决策情况:如果的概率,则应拒绝原假设,即认为样本来自的总体分布与期望分布或某一理论分布存在显著差异;反之,则不存在显著差异。决策情况:基本操作及应用举例(以心脏病猝死.sav为例)分析非参数检验卡方基本操作及应用举例分析第7章-SPSS非参数检验课件输入检验变量输入理论(期望)分布值输入检验变量输入理论(期望)分布值第7章-SPSS非参数检验课件因为卡方对应的概率P值大于0.05,所以差异不显著,即认为样本来自的总体分布与指定的理论分布无显著差异因为卡方对应的概率P值大于0.05,二项分布检验

SPSS的二项分布检验正是通过样本数据检验样本来自的总体是否服从指定概率值为P的二项分布,其原假设为样本来自的总体与指定的二项分布无显著差异。概念二项分布检验概念SPSS二项分布检验,在小样本中采用精确检验方法,对于大样本则采用近似检验方法。精确检验方法计算n次试验中成功出现的次数小于等于x次的概率,即在大样本下,采用近似检验,用Z检验统计量,即基本思想SPSS二项分布检验,在小样本中采用精确检验方法,对于大样本决策情况:如果上述两种情况下的概率P值小于显著性水平,则应拒绝原假设,即认为样本来自的总体分布与指定的二项分布存在显著差异;反之,则不存在显著差异。决策情况:二项分布检验的基本操作与应用(以产品合格率.sav为例)分析非参数检验二项式二项分布检验的基本操作与应用分析输入检验概率值输入检验概率值第7章-SPSS非参数检验课件由于概率P大于0.05,所以不能拒绝原假设,即认为一级品率不低于0.9由于概率P大于0.05,所以不能拒绝原假设,即认为一级品率不K-S检验(Kolmogorow-Smirnov),该方法能够利用样本数据推断样本来自总体是否与某一个理论分布有显著差异,是一种拟合优度的检验方法,适用于探索连续型随机变量的分布。概念单样本K-S检验概念单样本K-S检验

正态分布

均匀分布指数分布

泊松分布理论分布类型正态分布理在原假设成立的前提下,计算各样本观测值在理论分布中出现的理论概率值F(x)计算各样本观测值的实际累计概率值S(x);计算实际累计概率值与理论累计概率值的差S(x)-F(x)计算差值序列中的最大绝对差值,即修正的D为基本思想在原假设成立的前提下,计算各样本观测值在理论分布中出现的理论决策情况:如果D统计量的概率P值小于显著性水平,则应拒绝原假设,即认为样本来自的总体分布与指定的分布存在显著差异;反之,则不存在显著差异。决策情况:单样本K-S检验的基本操作与应用举例以儿童身高.sav为例分析非参数检验1-样本K-S单样本K-S检验的基本操作与应用举例分析第7章-SPSS非参数检验课件正态分布正态分布第7章-SPSS非参数检验课件由于概率P大于0.05,所以不能拒绝原假设,即认为周岁儿童身高的总体分布与正态分布无显著差异由于概率P大于0.05,所以不能拒绝原假设,即认为周岁儿童身P-P图P-P图Q-Q图Q-Q图

单样本K-S检验的基本操作与应用举例以储户存款金额总体的分布检验为例

单样本K-S检验的基本操作与应用举例概率P小于0.05,所以拒绝原假设,即认为储户存款金额总体分布不服从正态分布概率P小于0.05,所以拒绝原假设,即认为储户存款金额总体分变量值随机性检验

概念:通过对样本变量值的分析,实现对总体变量值出现是否随机进行检验。基本思想:利用游程大小进行判断。

游程是指变量值序列中连续出现相同的值的次数检验统计量:

其中,基本思想变量值随机性检验

基本思想变量值随机性检验的SPSS操作

以耐电压值.sav为例变量值随机性检验的SPSS操作

以耐电压值.sav为例第7章-SPSS非参数检验课件因为概率P值大于0.05,所以不能拒绝原假设,即认为该设备是正常工作的因为概率P值大于0.05,所以不能拒绝原假设,即认为该设备是练习1.在一个正20面体的各面上分别标出0~9个数字,每个数字在两个面上标出,现将它投掷805次,得出各数字朝上的次数。数据放在Frequncy.sav文件中,试检验其均匀性。2.试着检验抛硬币实验中,正面出现的概率是否为1/2.数据在硬币结果.sav中。3.试着检验10个电子元件的使用寿命分布是否服从指数分布?数据在电子元件使用寿命.sav中。练习1.在一个正20面体的各面上分别标出0~9个数字,每个数4.现有抛掷一枚硬币66次所得结果保存在数据文件硬币结果.sav中,请检验该实验是否是随机性实验。4.现有抛掷一枚硬币66次所得结果保存在数据文件硬币结果.第二节两独立样本的非参数检验如果两个无联系总体的分布是未知的,则检验两个总体的分布是否有显著差异的方法是一种非参数检验方法,或者称为两个独立样本的检验。检验是通过两个总体中分别抽取的随机样本数据进行的。概念第二节两独立样本的非参数检验概念

曼-惠特尼U检验

K-S检验

w-w游程检验

极端反应检验方法方法方法一:两独立样本的曼-惠特尼

U检验概念

通过对两组独立样本平均秩的研究来推断它们来自的两个总体分布有无显著差异。检验的基本步骤首先将两组样本数据(X1,X2,…Xn)和(Y1,Y2,…Yn

)混合并按升序排序,得到每个数据各自的秩Ri基本思想方法一:两独立样本的曼-惠特尼

U检验基本思想分别对两组样本的秩求平均,得到两个平均秩Wx/m和WY/m,然后比较它们的大小,若差值较大,说明原假设很可能不成立。计算两个样本各自优先于对方的秩的个数U1、U2,即然后对U1、U2大小进行比较,若它们相差较大时,则有必要怀疑原假设的真实性。计算WilcoxonW统计量,其为上述U1、U2较小者所对应的秩和分别对两组样本的秩求平均,得到两个平均秩Wx/m和WY/m,计算曼-惠特尼U统计量,小样本下,U统计量服从Mann-Whitney分布即大样本下,U统计量近似服从正态分布计算曼-惠特尼U统计量,统计决策在小样本下,依据U统计量的概率P值进行决策;在大样本下,则依据Z统计量的概率P值进行决策。若概率P值小于显著性水平,则拒绝原假设,即认为样本来自的两总体分布存在显著差异;反之,则差异不显著。具体计算举例以课本P199页数据为例统计决策具体计算举例以课本P199页数据为例曼-惠特尼U检验SPSS基本操作(以两独立样本使用寿命为例)分析非参数检验2个独立样本曼-惠特尼U检验SPSS基本操作分析第7章-SPSS非参数检验课件由于本题中涉及是小样本,因此采用U检验,相应概率为精确概率,由于0.04小于0.05,所以拒绝原假设,所以认为两种工艺下产品使用寿命的分步存在显著差异由于本题中涉及是小样本,因此采用U检验,相应概率为精确概率,方法二:两独立样本K-S检验概念

K-S检验不仅能够对单个总体的分布是否与某一理论分布存在显著差异进行检验,还可以对两个总体的分布是否存在差异进行检验基本思想方法二:两独立样本K-S检验基本思想基本思想同前面单样本K-S检验,但也有些不同,就是分析的对象是变量值的秩。基本步骤首先,将两组样本混合并按升序排序然后,分别计算两组样本秩的累计频数和累计频率。最后,计算两组累计频率的差,得到秩的差值序列并得到D统计量,根据D统计量得出的概率P与显著性水平大小进行比较判断。基本思想同前面单样本K-S检验,但也有些不同,就是分析的对象两独立样本K-S检验SPSS基本操作(以两独立样本-使用寿命为例)两独立样本K-S检验SPSS基本操作第7章-SPSS非参数检验课件方法三:两独立样本的游程检验该方法的基本思想与单样本游程检验的基本相同,不同的是计算游程数的方法。两独立样本的游程数依赖于变量的秩。

首先,将两组样本混合并按升序排序,在变量值排序的同时,对应的组标记值也会随之重新排列然后,对组标记值序列按前面的计算游程的方法进行计算游程数。若游程数较少,则说明两总体有较大差异。反之,则差异不大。基本思想方法三:两独立样本的游程检验基本思想

根据游程数计算Z统计量最后,进行统计决策。根据游程数计算Z统计量最后,进行统计决策。两独立样本的游程检验SPSS的基本操作(以两独立样本-使用寿命为例)两独立样本的游程检验SPSS的基本操作第7章-SPSS非参数检验课件方法四:两独立样本的

极端反应检验将一组样本作为控制样本,另一组样本作为实验样本,以控制样本作为对照,检验实验样本相对于控制样本是否出现了极端反应。如果实验样本没有出现极端反应,则认为两总体分布无显著差异;反之则差异显著。基本思想方法四:两独立样本的

极端反应检验基本思想具体分析过程:首先,将两组样本混合按升序排序然后,求出控制样本的最小秩Qmin

和最大秩Qmax,并计算出跨度S=Qmax-Qmin+1

接着,

为消除样本数据中极端值对分析结果的影响,计算跨度之前可按比例去除控制样本中部分靠近两端的样本值,然后再求跨度,得到截头跨度。具体分析过程:极端反应注重对跨度和截头跨度的分析。针对跨度或截头跨度计算的H检验统计量为:小样本下,H统计量服从Hollander分布;大样本下,H统计量近似服从正态分布。最后,进行统计决策。极端反应注重对跨度和截头跨度的分析。针对跨度或截头跨度计算的两独立样本的极端反应检验SPSS的基本操作(以两独立样本-使用寿命为例)两独立样本的极端反应检验SPSS的基本操作第7章-SPSS非参数检验课件应用举例(以城镇和农村储户存款金额比较为例)应用举例(以城镇和农村储户存款金额比较为例)第7章-SPSS非参数检验课件第7章-SPSS非参数检验课件

双样本Kolmogorov-Smirnov检验

双样本Kolmogorov-Smirnov检验

Wald-Wolfowitz检验

Wald-Wolfowitz检验

练习题现有数据关于患者服用两种不同安眠药后睡眠时间延长情况,请用四种不同方法来检验两种不同安眠药对睡眠时间延长分布是否有显著差异?练习题现有数据关于患者服用两种不同安眠药后睡眠时间延长情况,第三节多独立样本的非参数检验中位数检验Kruskal-Wallis检验Jonckheere-Terpstra检验城市身高样本数据北京79,75,78,76,72上海72,71,74,74,73成都76,78,78,77,75广州70,72,71,71,69四城市周岁儿童身高样本数据第三节多独立样本的非参数检验城市身高样本数据北京79,75,中位数检验概念:通过对多组独立样本的分析,检验它们来自的总体的中位数是否存在显著差异。基本思想:如果多个总体的中位数没有显著差异,那么这个共同的中位数应在各样本组中均处在中间位置上。基本思想中位数检验基本思想分析步骤:首先,将多组样本混合按升序排序,并求出混合样本的中位数。然后,分别计算各组样本中大于和小于上述中位数的样本个数,形成列联表。接着,利用卡方检验方法分析各组样本来自的总体对于上述中位数的分布是否一致。如果各组中大于(或小于)上述中位数的样本比例大致相同,则可认为多组样本有共同的中位数,它们来自的总体的中位数没有显著差异。反之,则有显著差异。最后,进行统计决策。分析步骤:计算示例计算示例多独立样本的中位数检验SPSS基本操作以儿童身高.sav为例分析非参数检验K个独立样本多独立样本的中位数检验SPSS基本操作分析第7章-SPSS非参数检验课件因为概率P小于0.05,所以拒绝原假设,即认为四个不同城市的儿童身高的中位数有显著差异因为概率P小于0.05,所以拒绝原假设,即认为四个不同城市的Kruskal-Wallis检验概念:检验实质是两独立样本的曼-惠特尼检验在多个独立样本下的推广,用于检验多个总体的分布是否存在显著差异。基本思想:首先,将多组样本数据混合并按升序排序,求出各变量值的秩.基本思想Kruskal-Wallis检验基本思想其次,考察各组秩的均值是否存在显著差异。构造K-W检验统计量为:最后,根据K-W统计量相应的概率P值与显著性水平大小进行比较,作出决策。其次,考察各组秩的均值是否存在显著差异。构造K-W检验统计量多独立样本的Kruskal-Wallis检验的SPSS操作以儿童身高.sav为例多独立样本的Kruskal-Wallis检验的SPSS操作因为概率P值小于0.05,所以拒绝原假设,即认为四个城市的周岁儿童身高的平均秩差异是显著的,总体分布是存在显著差异的因为概率P值小于0.05,所以拒绝原假设,即认为四个城市的周Jonckheere-Terpstra检验概念:用于检验多个独立样本来自的多个总体的分布是否存在显著差异的非参数检验方法。基本思想:同两独立样本的曼-惠特尼U检验类似,也是计算一组样本的观察值小于其他组样本观察值的个数。基本思想Jonckheere-Terpstra检验基本思想小样本下,构造的J-T统计量为:大样本下,构造的Z统计量为:最后,根据统计量得到的概率P值与显著性水平大小进行比较,作出决策小样本下,构造的J-T统计量为:最后,根据统计量得到的概率P多独立样本的Jonckheere-Terpstra检验的SPSS操作以儿童身高.sav为例多独立样本的Jonckheere-Terpstra检验的SP第7章-SPSS非参数检验课件练习现有不同地区不同性质工作的职工工资数据保存在文件“职工工资.sav”中,如果定义一个分组变量,将我国东部、中部和西部各省标上1,2,3作为分组值,下面来考察东部、中部和西部的职工平均工资是否存在显著差异(α=0.05)?练习现有不同地区不同性质工作的职工工资数据保存在文件“职工工

两配对样本的非参数检验是在对总体分布不甚了解的情况下,通过对两组配对样本的分析,推断样本来自的两个总体的分布是否存在显著差异的方法。第四节两配对样本的非参数检验概念

第四节两配对样本的非参数检验概念

Mcnemar

符号检验

Wilcoxon符号检验方法方法方法一:两配对样本的Mcnemar方法

McNemar检验是一种变化显著性检验,它将研究对象自身作为对照者检验其“前后”的变化是否显著。其原假设是两配对样本来自的两总体的分布无显著性差异。基本思想

该方法主要针对服从二项分布的变量,因此如果变量不是二项分布,还要先对数据进行转化,然后再检验。因此有一定的局限性方法一:两配对样本的Mcnemar方法基本思想该方法主分析非参数检验2个相关样本SPSS基本操作(以统计学.sav为例)分析SPSS基本操作(以统计学.sav为例)第7章-SPSS非参数检验课件因为概率P大于0.05,所以不能拒绝原假设,即认为学习统计学前后学生对其重要性认识没有发生显著变化因为概率P大于0.05,所以不能拒绝原假设,即认为学习统计学方法二:两配对样本符号检验其检验方法与McNemar检验有类似的解决思路,且利用正负号的个数实现检验。基本步骤为:

首先,分别用第二组样本的各个观察值减去第一组样本的对应观察值。差值为正则记为正号,为负则记为负号;然后,将正号的个数与负号的个数进行比较。基本思想方法二:两配对样本符号检验基本思想若两种符号个数大致相同,则认为两组配对样本的数据分布差距较小;反之,则差距较大。检验方法仍然采用二项分布检验方法。若两种符号个数大致相同,则认为两组配对样本的数据分布差距较小SPSS基本操作(以训练成绩.sav为例)SPSS基本操作(以训练成绩.sav为例)由于概率P值大于0.05,因此不能拒绝原假设,即认为训练前后的成绩分布没有显著差异,也

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论