




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
作者贾俊平统计学统
计
学
(第三版)
20082008年8月作者贾俊平统计学统计学
(第三版)
200
……正如一个法庭宣告某一判决为“无罪(notguilty)”而不为“清白(innocent)”,统计检验的结论也应为“不拒绝”而不为“接受”。
——JanKmenta统计名言2008年8月……正如一个法庭宣告某一判决统计名言2008年8月第6章假设检验6.1假设检验的基本问题6.2一个总体参数的检验6.3两个总体参数的检验2008年8月第6章假设检验6.1假设检验的基本问题20学习目标假设检验的基本思想和原理假设检验的步骤一个总体参数的检验两个总体参数的检验P值的计算与应用用Excel进行检验2008年8月学习目标假设检验的基本思想和原理2008年8月正常人的平均体温是37oC吗?当问起健康的成年人体温是多少时,多数人的回答是37oC,这似乎已经成了一种共识。下面是一个研究人员测量的50个健康成年人的体温数据37.136.936.937.136.436.936.636.236.736.937.636.737.336.936.436.137.136.636.536.737.136.236.337.536.937.036.736.937.037.136.637.236.436.637.336.137.137.036.636.936.737.236.337.136.736.837.037.036.137.02008年8月正常人的平均体温是37oC吗?当问起健康的成年人体温是多少正常人的平均体温是37oC吗?根据样本数据计算的平均值是36.8oC,标准差为0.36oC
根据参数估计方法得到的健康成年人平均体温的95%的置信区间为(36.7,36.9)。研究人员发现这个区间内并没有包括37oC因此提出“不应该再把37oC作为正常人体温的一个有任何特定意义的概念”我们应该放弃“正常人的平均体温是37oC”这个共识吗?本章的内容就将提供一套标准统计程序来检验这样的观点2008年8月正常人的平均体温是37oC吗?根据样本数据计算的平均值是36.1假设检验的基本原理
6.1.1怎样提出假设?6.1.2怎样做出决策?6.1.3怎样表述决策结果?第6章假设检验2008年8月6.1假设检验的基本原理第6章假设检验20086.1.1怎样提出假设?6.1假设检验的基本原理2008年8月6.1.1怎样提出假设?6.1假设检验的基本原理2什么是假设?
(hypothesis)在参数检验中,对总体参数的具体数值所作的陈述就一个总体而言,总体参数包括总体均值、比例、方差等分析之前必需陈述2008年8月什么是假设?
(hypothesis)在参数检验中,对总体什么是假设检验?
(hypothesistest)先对总体的参数(或分布形式)提出某种假设,然后利用样本信息判断假设是否成立的统计方法有参数检验和非参数检验逻辑上运用反证法,统计上依据小概率原理小概率是在一次试验中,一个几乎不可能发生的事件发生的概率在一次试验中小概率事件一旦发生,我们就有理由拒绝原假设2008年8月什么是假设检验?
(hypothesistest)先对总原假设
(nullhypothesis)又称“0假设”,研究者想收集证据予以反对的假设,用H0表示所表达的含义总是指参数没有变化或变量之间没有关系
最初被假设是成立的,之后根据样本数据确定是否有足够的证据拒绝它总是有符号,或H0:
=某一数值H0:
某一数值H0:
某一数值例如,H0:
10cmnull2008年8月原假设
(nullhypothesis)又称“0假设”,研也称“研究假设”,研究者想收集证据予以支持的假设,用H1或Ha表示所表达的含义是总体参数发生了变化或变量之间有某种关系备择假设通常用于表达研究者自己倾向于支持的看法,然后就是想办法收集证据拒绝原假设,以支持备择假设
总是有符号
,或H1:
某一数值H1:
某一数值H1:<某一数值备择假设(alternativehypothesis)2008年8月也称“研究假设”,研究者想收集证据予以支持的假设,用H1或H备择假设没有特定的方向性,并含有符号“”的假设检验,称为双侧检验或双尾检验(two-tailedtest)
备择假设具有特定的方向性,并含有符号“>”或“<”的假设检验,称为单侧检验或单尾检验(one-tailedtest)备择假设的方向为“<”,称为左侧检验
备择假设的方向为“>”,称为右侧检验
双侧检验与单侧检验2008年8月备择假设没有特定的方向性,并含有符号“”的假设检验,称为双双侧检验与单侧检验
(假设的形式)假设双侧检验单侧检验左侧检验右侧检验原假设H0:m
=m0H0:m
m0H0:m
m0备择假设H1:m
≠m0H1:m
<m0H1:m
>m0以总体均值的检验为例2008年8月双侧检验与单侧检验
(假设的形式)假设双侧检验单侧检验左侧【例】一种零件的生产标准是直径应为10cm,为对生产过程进行控制,质量监测人员定期对一台加工机床检查,确定这台机床生产的零件是否符合标准要求。如果零件的平均直径大于或小于10cm,则表明生产过程不正常,必须进行调整。试陈述用来检验生产过程是否正常的原假设和被择假设提出假设(例题分析)解:研究者想收集证据予以证明的假设应该是“生产过程不正常”。建立的原假设和备择假设为
H0:
10cmH1:
10cm
2008年8月【例】一种零件的生产标准是直径应为10cm,为对生产过程进行【例】某品牌洗涤剂在它的产品说明书中声称:平均净含量不少于500克。从消费者的利益出发,有关研究人员要通过抽检其中的一批产品来验证该产品制造商的说明是否属实。试陈述用于检验的原假设与备择假设提出假设(例题分析)解:研究者抽检的意图是倾向于证实这种洗涤剂的平均净含量并不符合说明书中的陈述。建立的原假设和备择假设为
H0:
500H1:
<5002008年8月【例】某品牌洗涤剂在它的产品说明书中声称:平均净含量不少于5【例】一家研究机构估计,某城市中家庭拥有汽车的比例超过30%。为验证这一估计是否正确,该研究机构随机抽取了一个样本进行检验。试陈述用于检验的原假设与备择假设提出假设(例题分析)解:研究者想收集证据予以支持的假设是“该城市中家庭拥有汽车的比例超过30%”。建立的原假设和备择假设为
H0:
30%H1:
30%2008年8月【例】一家研究机构估计,某城市中家庭拥有汽车的比例超过30%原假设和备择假设是一个完备事件组,而且相互对立在一项假设检验中,原假设和备择假设必有一个成立,而且只有一个成立先确定备择假设,再确定原假设等号“=”总是放在原假设上因研究目的不同,对同一问题可能提出不同的假设(也可能得出不同的结论)提出假设(结论与建议)2008年8月原假设和备择假设是一个完备事件组,而且相互对立提出假设2006.1.2怎样做出决策?6.1假设检验的基本原理2008年8月6.1.2怎样做出决策?6.1假设检验的基本原理2假设检验的基本思想...因此我们拒绝假设
=50...如果这是总体的假设均值样本均值m
=50抽样分布H0这个值不像我们应该得到的样本均值...202008年8月假设检验的基本思想...因此我们拒绝假设=50..两类错误与显著性水平研究者总是希望能做出正确的决策,但由于决策是建立在样本信息的基础之上,而样本又是随机的,因而就有可能犯错误原假设和备择假设不能同时成立,决策的结果要么拒绝H0,要么不拒绝H0。决策时总是希望当原假设正确时没有拒绝它,当原假设不正确时拒绝它,但实际上很难保证不犯错误第Ⅰ类错误(错误)原假设为正确时拒绝原假设第Ⅰ类错误的概率记为,被称为显著性水平2. 第Ⅱ类错误(错误)原假设为错误时未拒绝原假设第Ⅱ类错误的概率记为(Beta)2008年8月两类错误与显著性水平研究者总是希望能做出正确的决策,但由于决两类错误的控制一般来说,对于一个给定的样本,如果犯第Ι类错误的代价比犯第Ⅱ类错误的代价相对较高,则将犯第Ⅰ类错误的概率定得低些较为合理;反之,如果犯第Ι类错误的代价比犯第Ⅱ类错误的代价相对较低,则将犯第Ⅰ类错误的概率定得高些一般来说,发生哪一类错误的后果更为严重,就应该首要控制哪类错误发生的概率。但由于犯第Ι类错误的概率是可以由研究者控制的,因此在假设检验中,人们往往先控制第Ι类错误的发生概率2008年8月两类错误的控制一般来说,对于一个给定的样本,如果犯第Ι类错误显著性水平
(significantlevel)事先确定的用于拒绝原假设H0时所必须的证据能够容忍的犯第Ⅰ类错误的最大概率(上限值)2. 原假设为真时,拒绝原假设的概率抽样分布的拒绝域3. 表示为(alpha)常用的值有0.01,0.05,0.104. 由研究者事先确定2008年8月显著性水平
(significantlevel)事先确依据什么做出决策?若假设为H0=500,H1<500。样本均值为495,拒绝H0吗?样本均值为502,拒绝H0吗?做出拒绝或不拒绝原假设的依据是什么?传统上,做出决策所依据的是样本统计量,现代检验中人们直接使用由统计量算出的犯第Ⅰ类错误的概率,即所谓的P值2008年8月依据什么做出决策?若假设为H0=500,H1<500。样本根据样本观测结果计算出对原假设和备择假设做出决策某个样本统计量对样本估计量的标准化结果原假设H0为真点估计量的抽样分布检验统计量(teststatistic)标准化的检验统计量
2008年8月根据样本观测结果计算出对原假设和备择假设做出决策某个样本统计用统计量决策
(双侧检验)抽样分布H0临界值临界值a/2a/2拒绝H0拒绝H01-置信水平RegionofRejectionRegionofNonrejectionRegionofRejection2008年8月用统计量决策
(双侧检验)抽样分布H0临界值临界值a/2用统计量决策
(左侧检验)抽样分布H0临界值a拒绝H01-置信水平RegionofRejectionRegionofNonrejection2008年8月用统计量决策
(左侧检验)抽样分布H0临界值a拒绝H01用统计量决策
(右侧检验)抽样分布H0临界值2拒绝H01-置信水平RegionofNonrejectionRegionofRejection2008年8月用统计量决策
(右侧检验)抽样分布H0临界值2拒绝H01统计量决策规则给定显著性水平,查表得出相应的临界值z或z/2,t或t/2将检验统计量的值与水平的临界值进行比较作出决策双侧检验:I统计量I>临界值,拒绝H0左侧检验:统计量<-临界值,拒绝H0右侧检验:统计量>临界值,拒绝H02008年8月统计量决策规则给定显著性水平,查表得出相应的临界值z或z用P值决策
(P-value)如果原假设为真,所得到的样本结果会像实际观测结果那么极端或更极端的概率P值告诉我们:如果原假设是正确的话,我们得到得到目前这个样本数据的可能性有多大,如果这个可能性很小,就应该拒绝原假设被称为观察到的(或实测的)显著性水平决策规则:若p值<,拒绝H02008年8月用P值决策
(P-value)如果原假设为真,所得到的样双侧检验的P值/
2/
2Z拒绝H0拒绝H00临界值计算出的样本统计量计算出的样本统计量临界值1/2P值1/2P值2008年8月双侧检验的P值/2/2Z拒绝H0拒绝H00左侧检验的P值Z拒绝H00临界值计算出的样本统计量1/2P值2008年8月左侧检验的P值Z拒绝H00临界值计算出的样本统计量1/2右侧检验的P值Z拒绝H00计算出的样本统计量临界值1/2P值2008年8月右侧检验的P值Z拒绝H00计算出的样本统计量临界值1/2P值是关于数据的概率P值原假设的对或错的概率无关它反映的是在某个总体的许多样本中某一类数据出现的经常程度,它是当原假设正确时,得到目前这个样本数据的概率比如,要检验全校学生的平均生活费支出是否等于500元,检验的假设为H0:=500;H0:500。假定抽出一个样本算出的样本均值600元,得到的值为P=0.02,这个0.02是指如果平均生活费支出真的是500元的话,那么,从该总体中抽出一个均值为600的样本的概率仅为0.02。如果你认为这个概率太小了,就可以拒绝原假设,因为如果原假设正确的话,几乎不可能抓到这样的一个样本,既然抓到了,就表明这样的样本不在少数,所以原假设是不对的值越小,你拒绝原假设的理由就越充分2008年8月P值是关于数据的概率P值原假设的对或错的概率无关2008年8要证明原假设不正确,P值要多小,才能令人信服呢?原假设的可信度又多高?如果H0所代表的假设是人们多年来一直相信的,就需要很强的证据(小的P值)才能说服他们拒绝的结论是什么?如果拒绝H0而肯定H1,你就需要有很强的证据显示要支持H1。比如,H1代表要花很多钱把产品包装改换成另一种包装,你就要有很强的证据显示新包装一定会增加销售量(因为拒绝H0要花很高的成本)多大的P值合适?2008年8月要证明原假设不正确,P值要多小,才能令人信服呢?多大的P有了P值,我们并不需要用5%或1%这类传统的显著性水平。P值提供了更多的信息,它让我们可以选择任意水平来评估结果是否具有统计上的显著性,从而可根据我们的需要来决定是否要拒绝原假设只要你认为这么大的P值就算是显著了,你就可以在这样的P值水平上拒绝原假设传统的显著性水平,如1%、5%、10%等等,已经被人们普遍接受为“拒绝原假设足够证据”的标准,我们大概可以说:10%代表有“一些证据”不利于原假设;5%代表有“适度证据”不利于原假设;1%代表有“很强证据”不利于原假设固定显著性水平是否有意义2008年8月有了P值,我们并不需要用5%或1%这类传统的显著性水平。P值用P值进行检验比根据统计量检验提供更多的信息统计量检验是我们事先给出的一个显著性水平,以此为标准进行决策,无法知道实际的显著性水平究竟是多少比如,根据统计量进行检验时,只要统计量的值落在拒绝域,我们拒绝原假设得出的结论都是一样的,即结果显著。但实际上,统计量落在拒绝域不同的地方,实际的显著性是不同的。比如,统计量落在临界值附近与落在远离临界值的地方,实际的显著性就有较大差异。而P值给出的是实际算出的显著水平,它告诉我们实际的显著性水平是多少P值决策与统计量的比较2008年8月用P值进行检验比根据统计量检验提供更多的信息P值决策与统计拒绝H0P值决策与统计量的比较拒绝H0的两个统计量的不同显著性Z拒绝H00统计量1
P1
值统计量2
P2
值拒绝H0临界值2008年8月拒绝H0P值决策与统计量的比较拒绝H0的两个统计量的不同显6.1.3怎样表述决策结果?6.1假设检验的基本原理2008年8月6.1.3怎样表述决策结果?6.1假设检验的基本原假设检验不能证明原假设正确假设检验的目的主要是收集证据拒绝原假设,而支持你所倾向的备择假设假设检验只提供不利于原假设的证据。因此,当拒绝原假设时,表明样本提供的证据证明它是错误的,当没有拒绝原假设时,我们也没法证明它是正确的,因为假设检验的程序没有提供它正确的证据这与法庭上对被告的定罪类似:先假定被告是无罪的,直到你有足够的证据证明他是有罪的,否则法庭就不能认定被告有罪。当证据不足时,法庭的裁决是“被告无罪”,但这里也没有证明被告就是清白的2008年8月假设检验不能证明原假设正确假设检验的目的主要是收集证据拒绝原假设检验不能证明原假设正确假设检验得出的结论都是根据原假设进行阐述的我们要么拒绝原假设,要么不拒绝原假设当不能拒绝原假设时,我们也从来不说“接受原假设”,因为没有证明原假设是真的采用“接受”原假设的说法,则意味着你证明了原假设是正确的没有足够的证据拒绝原假设并不等于你已经“证明”了原假设是真的,它仅仅意为着目前还没有足够的证据拒绝原假设,只表示手头上这个样本提供的证据还不足以拒绝原假设比如,在例6.2中,如果拒绝原假设,表明样本提供的证据证明该品牌洗涤剂的净含量与说明书所标识的不相符。如果不拒绝原假设,只能说这个样本提供的证据还不足证明净含量不是500克或500克以上,并不等于证明了净含量就超过了500克“不拒绝”的表述方式实际上意味着没有得出明确的结论2008年8月假设检验不能证明原假设正确假设检验得出的结论都是根据原假设进假设检验不能证明原假设正确“接受”的说法有时会产生误导这种说法似乎暗示着原假设已经被证明是正确的了实事上,H0的真实值我们永远也无法知道,不知道真实值是什么,又怎么能证明它是什么?H0只是对总体真实值的一个假定值,由样本提供的信息也就自然无法证明它是否正确采用“不拒绝”的表述方法更合理一些,因为这种表述意味着样本提供的证据不够强大,因而没有足够的理由拒绝,这不等于已经证明原假设正确2008年8月假设检验不能证明原假设正确“接受”的说法有时会产生误导200假设检验不能证明原假设正确【例】比如原假设为H0:=10,从该总体中抽出一个随机样本,得到x=9.8,在=0.05的水平上,样本提供的证据没有推翻这一假设,我们说“接受”原假设,这意为着样本提供的证据已经证明=10是正确的。如果我们将原假设改为H0:=10.5,同样,在=0.05的水平上,样本提供的证据也没有推翻这一假设,我们又说“接受”原假设。但这两个原假设究竟哪一个是“真实的”呢?其人弗能应也2008年8月假设检验不能证明原假设正确【例】比如原假设为H0:=10,从假设检验不能证明原假设正确假设检验中通常是先确定显著性水平,这就等于控制了第Ι类错误的概率,但犯第Ⅱ类错误的概率却是不确定的在拒绝H0时,犯第Ⅰ类错误的概率不超过给定的显著性水平,当样本结果显示没有充分理由拒绝原假设时,也难以确切知道第Ⅱ类错误发生的概率采用“不拒绝”而不采用“接受”的表述方式,在多数场合下便避免了错误发生的风险因为“接受”所得结论可靠性将由第Ⅱ类错误的概率来测量,而的控制又相对复杂,有时甚至根本无法知道的值,除非你能确切给出,否则就不宜表述成“接受”原假设2008年8月假设检验不能证明原假设正确假设检验中通常是先确定显著性水平,假设检验不能证明原假设正确在实际检验中,针对一个具体的问题,将检验结果表述为“不拒绝”原假设,这似乎让人感到无所是从比如,你想购买一批产品,检验的结果没有拒绝原假设,即达到合同规定的标准要求,你是否购买这批产品呢?这时,你可以对检验的结果采取某种默认态度,退一步说,你可以将检验结果表述为“可以接受”原假设,你但这并不等于说你“确实接受”它2008年8月假设检验不能证明原假设正确在实际检验中,针对一个具体的问统计上显著不一定有实际意义当拒绝原假设时,我们称样本结果是统计上显著的(statisticallySignificant)当不拒绝原假设时,我们称样本结果是统计上不显著的在“显著”和“不显著”之间没有清除的界限,只是在P值越来越小时,我们就有越来越强的证据,检验的结果也就越来越显著2008年8月统计上显著不一定有实际意义当拒绝原假设时,我们称样本结果是统“显著的”(Significant)一词的意义在这里并不是“重要的”,而是指“非偶然的”一项检验在统计上是“显著的”,意思是指:这样的(样本)结果不是偶然得到的,或者说,不是靠机遇能够得到的如果得到这样的样本概率(P)很小,则拒绝原假设在这么小的概率下竟然得到了这样的一个样本,表明这样的样本经常出现,所以,样本结果是显著的统计上显著不一定有实际意义2008年8月“显著的”(Significant)一词的意义在这里并不是“统计上显著不一定有实际意义在进行决策时,我们只能说P值越小,拒绝原假设的证据就越强,检验的结果也就越显著但P值很小而拒绝原假设时,并不一定意味着检验的结果就有实际意义因为假设检验中所说的“显著”仅仅是“统计意义上的显著”一个在统计上显著的结论在实际中却不见得就很重要,也不意味着就有实际意义因为值与样本的大小密切相关,样本量越大,检验统计量的P值也就越大,P值就越小,就越有可能拒绝原假设2008年8月统计上显著不一定有实际意义在进行决策时,我们只能说P值越小,统计上显著不一定有实际意义如果你主观上要想拒绝原假设那就一定能拒绝它这类似于我们通常所说的“欲加之罪,何患无词”只要你无限制扩大样本量,几乎总能拒绝原假设当样本量很大时,解释假设检验的结果需要小心在大样本情况下,总能把与假设值的任何细微差别都能查出来,即使这种差别几乎没有任何实际意义在实际检验中,不要刻意追求“统计上的”显著性,也不要把统计上的显著性与实际意义上的显著性混同起来一个在统计上显著的结论在实际中却不见得很重要,也不意为着就有实际意义2008年8月统计上显著不一定有实际意义如果你主观上要想拒绝原假设那就一定6.2一个总体参数的检验
6.2.1总体均值的检验6.2.2总体比例的检验6.2.3总体方差的检验第6章假设检验2008年8月6.2一个总体参数的检验第6章假设检验20086.2.1总体均值的检验
(大样本)6.2一个总体参数的检验2008年8月6.2.1总体均值的检验
(大样本)总体均值的检验
(大样本)1. 假定条件大样本(n30)使用z检验统计量2已知:2未知:2008年8月总体均值的检验
(大样本)1. 假定条件2008年8月总体均值的检验(2已知)
(例题分析—大样本)【例】一种罐装饮料采用自动生产线生产,每罐的容量是255ml,标准差为5ml。为检验每罐容量是否符合要求,质检人员在某天生产的饮料中随机抽取了40罐进行检验,测得每罐平均容量为255.8ml。取显著性水平=0.05,检验该天生产的饮料容量是否符合标准要求?双侧检验2008年8月总体均值的检验(2已知)
(例题分析—大样本)【例】一总体均值的检验(2已知)
(例题分析-大样本)H0
:=255H1
:
255
=
0.05n
=
40临界值(c):检验统计量:决策:结论:
用Excel中的【NORMSDIST】函数得到的双尾检验P=0.312945不拒绝H0没有证据表明该天生产的饮料不符合标准要求
z01.96-1.960.005拒绝H0拒绝H00.0052008年8月总体均值的检验(2已知)
(例题分析-大样本)H0:总体均值的检验(z检验)
(P值的计算与应用)第1步:进入Excel表格界面,直接点击【fx】第2步:在函数分类中点击【统计】,并在函数名菜单下选择【NORMSDIST】,然后【确定】第3步:将z的绝对值1.01录入,得到的函数值为
0.843752345
P值=2(1-0.843752345)=0.312495
P值远远大于,故不拒绝H02008年8月总体均值的检验(z检验)
(P值的计算与应用)第1步:总体均值的检验(2未知)
(例题分析—大样本)【例】一种机床加工的零件尺寸绝对平均误差为1.35mm。生产厂家现采用一种新的机床进行加工以期进一步降低误差。为检验新机床加工的零件平均误差与旧机床相比是否有显著降低,从某天生产的零件中随机抽取50个进行检验。利用这些样本数据,检验新机床加工的零件尺寸的平均误差与旧机床相比是否有显著降低?(=0.01)
左侧检验50个零件尺寸的误差数据(mm)1.261.191.310.971.811.130.961.061.000.940.981.101.121.031.161.121.120.951.021.131.230.741.500.500.590.991.451.241.012.031.981.970.911.221.061.111.541.081.101.641.702.371.381.601.261.171.121.230.820.862008年8月总体均值的检验(2未知)
(例题分析—大样本)【例】总体均值的检验
(例题分析—大样本)H0
:
1.35H1
:<1.35
=
0.01n
=
50临界值(c):检验统计量:拒绝H0新机床加工的零件尺寸的平均误差与旧机床相比有显著降低决策:结论:-2.33z0拒绝H00.012008年8月总体均值的检验
(例题分析—大样本)H0:1.35检总体均值的检验
(P值的计算与应用—大样本)第1步:进入Excel表格界面,直接点击【f(x)】第2步:在函数分类中点击【统计】,并在函数名的菜单下选择【ZTEST】,然后【确定】第3步:在所出现的对话框【Array】框中,输入原始数据所在区域;在【X】后输入参数的某一假定值(这里为1.35);在【Sigma】后输入已知的总体标准差(若总体标准差未知则可忽略不填,系统将自动使用样本标准差代替)第4步:用1减去得到的函数值0.995421023即为P值
P值=1-0.995421023=0.004579
P值<=0.01,拒绝H0用Excel计算P值2008年8月总体均值的检验
(P值的计算与应用—大样本)第1步:进入总体均值的检验
(P值的图示)计算出的样本统计量=2.6061P=0.004579
Z拒绝H00临界值P值2008年8月总体均值的检验
(P值的图示)计算出的样本统计量=2.6总体均值的检验(2未知)
(例题分析)【例】某一小麦品种的平均产量为5200kg/hm2。一家研究机构对小麦品种进行了改良以期提高产量。为检验改良后的新品种产量是否有显著提高,随机抽取了36个地块进行试种,得到的样本平均产量为5275kg/hm2,标准差为120/hm2。试检验改良后的新品种产量是否有显著提高?(=0.05)
右侧检验2008年8月总体均值的检验(2未知)
(例题分析)【例】某一小麦品总体均值的检验(2未知)
(例题分析)H0
:
5200H1
:>5200
=
0.05n
=
36临界值(c):检验统计量:拒绝H0
(P=0.000088<
=0.05)改良后的新品种产量有显著提高
决策:结论:z0拒绝H00.051.6452008年8月总体均值的检验(2未知)
(例题分析)H0:5总体均值的检验(z检验)
(P值的图示)抽样分布P=0.000088
01.645a=0.05拒绝H01-计算出的样本统计量=3.75P值2008年8月总体均值的检验(z检验)
(P值的图示)抽样分布P=总体均值的检验
(小样本)1. 假定条件总体服从正态分布小样本(n<
30)检验统计量2已知:2未知:2008年8月总体均值的检验
(小样本)1. 假定条件2008年8月总体均值的检验
(例题分析—小样本)【例】一种汽车配件的平均长度要求为12cm,高于或低于该标准均被认为是不合格的。汽车生产企业在购进配件时,通常是经过招标,然后对中标的配件提供商提供的样品进行检验,以决定是否购进。现对一个配件提供商提供的10个样本进行了检验。假定该供货商生产的配件长度服从正态分布,在0.05的显著性水平下,检验该供货商提供的配件是否符合要求?10个零件尺寸的长度(cm)12.210.812.011.811.912.411.312.212.012.32008年8月总体均值的检验
(例题分析—小样本)【例】一种汽车配件的平总体均值的检验
(例题分析—小样本)H0
:=12H1
:
12
=0.05df=10-1=9临界值(c):检验统计量:不拒绝H0没有证据表明该供货商提供的零件不符合要求
决策:结论:t02.262-2.2620.025拒绝H0拒绝H00.0252008年8月总体均值的检验
(例题分析—小样本)H0:=12检验总体均值的检验
(P值的计算与应用-t检验)第1步:进入Excel表格界面,直接点击【fx】第2步:在函数分类中点击【统计】,并在函数名的菜单下选择【TDIST】,然后【确定】第3步:在出现对话框的【X】栏中输入计算出的t的绝对值0.7035,在【Deg-freedom】(自由度)栏中输入本例的自由度9,在【Tails】栏中输入2(表明是双侧检验,如果是单测检验则在该栏输入1)第4步:P值=0.499537958
P值>=0.05,故不拒绝H0
2008年8月总体均值的检验
(P值的计算与应用-t检验)第1步:进一个总体均值的检验
(作出判断)是否已知小样本量n大是否已知否t检验否z检验是z检验
是z检验2008年8月一个总体均值的检验
(作出判断)是否已知小样本量n大6.2.2总体比例的检验6.2一个总体参数的检验2008年8月6.2.2总体比例的检验6.2一个总体参数的检验2总体比例检验假定条件总体服从二项分布可用正态分布来近似(大样本)检验的z统计量0为假设的总体比例2008年8月总体比例检验假定条件0为假设的总体比例2008年8月总体比例的检验
(例题分析)【例】一种以休闲和娱乐为主题的杂志,声称其读者群中有80%为女性。为验证这一说法是否属实,某研究部门抽取了由200人组成的一个随机样本,发现有146个女性经常阅读该杂志。分别取显著性水平
=0.05和=0.01,检验该杂志读者群中女性的比例是否为80%?它们的P值各是多少?2008年8月总体比例的检验
(例题分析)【例】一种以休闲和娱乐为主题的总体比例的检验
(例题分析)H0
:=80%H1
:
80%
=0.05n
=200临界值(c):检验统计量:拒绝H0
(P=0.013328<
=0.05)该杂志的说法并不属实
决策:结论:z01.96-1.960.025拒绝H0拒绝H00.0252008年8月总体比例的检验
(例题分析)H0:=80%检验统计总体比例的检验
(例题分析)H0
:=80%H1
:
80%
=0.01n
=200临界值(c):检验统计量:不拒绝H0
(P=0.013328>=0.01)没有证据表明“该杂志声称读者群中有80%为女性”的看法不正确
决策:结论:z02.58-2.580.005拒绝H0拒绝H00.0052008年8月总体比例的检验
(例题分析)H0:=80%检验统计6.2.3总体方差的检验6.2一个总体参数的检验2008年8月6.2.3总体方差的检验6.2一个总体参数的检验2总体方差的检验
(2检验)
检验一个总体的方差或标准差假设总体近似服从正态分布使用2分布检验统计量假设的总体方差2008年8月总体方差的检验
(2检验)检验一个总体的方差或标准差总体方差的检验
(例题分析)【例】啤酒生产企业采用自动生产线灌装啤酒,每瓶的装填量为640ml,但由于受某些不可控因素的影响,每瓶的装填量会有差异。此时,不仅每瓶的平均装填量很重要,装填量的方差同样很重要。如果方差很大,会出现装填量太多或太少的情况,这样要么生产企业不划算,要么消费者不满意。假定生产标准规定每瓶装填量的标准差不应超过4ml。企业质检部门抽取了10瓶啤酒进行检验,得到的样本标准差为s=3.8ml。试以0.05的显著性水平检验装填量的标准差是否符合要求?2008年8月总体方差的检验
(例题分析)【例】啤酒生产企业采用自动生产线总体方差的检验
(例题分析)H0
:2
42H1
:2
>42
=0.10df=
10-1=9临界值(s):统计量:不拒绝H0
(p=0.52185)没有证据表明装填量的标准差不符合要求
2016.9190=0.05决策:结论:2008年8月总体方差的检验
(例题分析)H0:242统计量:6.3两个总体参数的检验
6.3.1两个总体均值之差的检验6.3.2两个总体比例之差的检验6.3.3两个总体方差比的检验第6章假设检验2008年8月6.3两个总体参数的检验第6章假设检验20086.3.1两个总体均值之差的检验6.3两个总体参数的检验2008年8月6.3.1两个总体均值之差的检验6.3两个总体参数两个总体均值之差的检验
(独立大样本)1. 假定条件两个样本是独立的随机样本正态总体或非正态总体大样本(n130和n230)检验统计量12,22已知:12,22未知:2008年8月两个总体均值之差的检验
(独立大样本)1. 假定条件200两个总体均值之差的检验
(例题分析—独立大样本)【例】某公司对男女职员的平均小时工资进行了调查,独立抽取了具有同类工作经验的男女职员的两个随机样本,并记录下两个样本的均值、方差等资料如右表。在显著性水平为0.05的条件下,能否认为男性职员与女性职员的平均小时工资存在显著差异?
两个样本的有关数据
男性职员女性职员n1=44n1=32x1=75x2=70S12=64S22=42.252008年8月两个总体均值之差的检验
(例题分析—独立大样本)【例】某公两个总体均值之差的检验
(例题分析—独立大样本)H0
:1-2=0H1
:1-2
0
=
0.05n1
=44,n2
=32临界值(c):检验统计量:决策:结论:
拒绝H0该公司男女职员的平均小时工资之间存在显著差异
z01.96-1.960.025拒绝H0拒绝H00.0252008年8月两个总体均值之差的检验
(例题分析—独立大样本)H0:两个总体均值之差的检验
(独立小样本:12,
22已知)假定条件两个独立的小样本两个总体都是正态分布12,22已知检验统计量2008年8月两个总体均值之差的检验
(独立小样本:12,22两个总体均值之差的检验
(独立小样本:12,22未知但12=22)假定条件两个独立的小样本两个总体都是正态分布12、22未知但相等,即12=22检验统计量其中:自由度:2008年8月两个总体均值之差的检验
(独立小样本:12,22未知两个总体均值之差的检验
(独立小样本:12,22未知且不等1222)假定条件两个总体都是正态分布12,22未知且不相等,即1222样本量不相等,即n1n2检验统计量自由度:2008年8月两个总体均值之差的检验
(独立小样本:12,22未知两个总体均值之差的检验
(例题分析—独立小样本,12=22)
【例】甲、乙两台机床同时加工某种同类型的零件,已知两台机床加工的零件直径(单位:cm)分别服从正态分布,并且有12=22。为比较两台机床的加工精度有无显著差异,分别独立抽取了甲机床加工的8个零件和乙机床加工的7个零件,通过测量得到如下数据。在=0.05的显著性水平下,样本数据是否提供证据支持
“两台机床加工的零件直径不一致”的看法?两台机床加工零件的样本数据
(cm)甲20.519.819.720.420.120.019.019.9乙20.719.819.520.820.419.620.22008年8月两个总体均值之差的检验
(例题分析—独立小样本,12=两个总体均值之差的检验
(例题分析—12=22)H0
:1-2
=0H1
:1-2
0
=0.05n1
=8,n2
=
7临界值(c):检验统计量:决策:结论:
不拒绝H0没有证据表明两台机床加工的零件直径不一致t02.160-2.1600.025拒绝H0拒绝H00.0252008年8月两个总体均值之差的检验
(例题分析—12=22)H0两个总体均值之差的检验
(用Excel进行检验)第1步:将原始数据输入到Excel工作表格中第2步:选择【工具】下拉菜单并选择【数据分析】选项第3步:在【数据分析】对话框中选择
【t-检验:双样本等方差假设】第4步:当对话框出现后在【变量1的区域】方框中输入第1个样本的数据区域在【变量2的区域】方框中输入第2个样本的数据区域在【假设平均差】方框中输入假定的总体均值之差在【】方框中输入给定的显著性水平(本例为0.05)在【输出选项】选择计算结果的输出位置,然后【确定】
用Excel进行检验2008年8月两个总体均值之差的检验
(用Excel进行检验)第1步:将两个总体均值之差的检验
(例题分析—独立小样本,1222)
【例】甲、乙两台机床同时加工某种同类型的零件,已知两台机床加工的零件直径(单位:cm)分别服从正态分布,并且有1222。为比较两台机床的加工精度有无显著差异,分别独立抽取了甲机床加工的8个零件和乙机床加工的7个零件,通过测量得到如下数据。在=0.05的显著性水平下,样本数据是否提供证据支持
“两台机床加工的零件直径不一致”的看法?两台机床加工零件的样本数据
(cm)甲20.519.819.720.420.120.019.019.9乙20.719.819.520.820.419.620.22008年8月两个总体均值之差的检验
(例题分析—独立小样本,12两个总体均值之差的检验
(用Excel进行检验)第1步:将原始数据输入到Excel工作表格中第2步:选择“工具”下拉菜单并选择【数据分析】选项第3步:在【数据分析】对话框中选择
【t-检验:双样本异方差假设】第4步:当对话框出现后在【变量1的区域】方框中输入第1个样本的数据区域在【变量2的区域】方框中输入第2个样本的数据区域在【假设平均差】方框中输入假定的总体均值之差在【】方框中输入给定的显著性水平(本例为0.05)在【输出选项】选择计算结果的输出位置,然后【确定】
用Excel进行检验2008年8月两个总体均值之差的检验
(用Excel进行检验)第1步:将两个总体均值之差的检验
(配对样本)假定条件两个总体配对差值构成的总体服从正态分布配对差是由差值总体中随机抽取的
数据配对或匹配(重复测量(前/后))检验统计量样本差值均值样本差值标准差2008年8月两个总体均值之差的检验
(配对样本)假定条件样本差值均值样本匹配样本
(数据形式)
观察序号样本1样本2差值1x11x21d1=x11-x212x12x22d2=x12-x22MMMMix1ix2idi
=x1i
-x2iMMMMnx1nx2ndn
=x1n-x2n2008年8月匹配样本
(数据形式)观察序号样本1样本2差值1x11x两个总体均值之差的检验
(例题分析—配对样本)
【例】某饮料公司开发研制出一新产品,为比较消费者对新老产品口感的满意程度,该公司随机抽选一组消费者(8人),每个消费者先品尝一种饮料,然后再品尝另一种饮料,两种饮料的品尝顺序是随机的,而后每个消费者要对两种饮料分别进行评分(0分~10分),评分结果如下表。取显著性水平=0.05,该公司是否有证据认为消费者对两种饮料的评分存在显著差异?两种饮料平均等级的样本数据旧饮料54735856新饮料667439762008年8月两个总体均值之差的检验
(例题分析—配对样本)【例】某饮两个总体均值之差的检验
(用Excel进行检验—配对样本)第1步:选择“工具”下拉菜单,并选择【数据分析】选项第3步:在分析工具中选择【t检验:平均值成对二样本分析】第4步:当出现对话框后
在【变量1的区域】方框内键入变量1的数据区域
在【变量2的区域】方框内键入变量2的数据区域
在【假设平均差】方框内键入假设的差值(这里为0)在【】框内键入给定的显著性水平,然后【确定】
用Excel进行检验2008年8月两个总体均值之差的检验
(用Excel进行检验—配对样本)两个总体均值之差的检验
(TTEST函数的应用
)函数语法:TTEST(array1,array2,tails,type)
说明:【Array1】为样本1的数据区域【array2】为样本2的数据区域【tails】表示分布曲线的尾数如果tails=1,返回分布的单尾概率如果tails=2,返回分布的双尾概率【type】为检验的类型1代表配对样本检验1代表双样本等方差假设3代表双样本异方差假设
使用TTEST进行检验2008年8月两个总体均值之差的检验
(TTEST函数的应用)函数语法两个总体均值之差的检验
(方法总结)均值差检验独立样本匹配样本大样本小样本小样本12、22已知12、22未知12、22已知12、22未知Z检验Z
检验Z检验t检验12=2212≠22t检验n1=n2n1≠n2t
检验t
检验2008年8月两个总体均值之差的检验
(方法总结)均值差检验独立样本匹配样6.3.2两个比例均值之差的检验6.3两个总体参数的检验2008年8月6.3.2两个比例均值之差的检验6.3两个总体参数1. 假定条件两个总体都服从二项分布可以用正态分布来近似检验统计量检验H0:1-2=0检验H0:1-2=d0两个总体比例之差的检验2008年8月1. 假定条件两个总体比例之差的检验2008年8月两个总体比例之差的检验
(例题分析)
【例】一所大学准备采取一项学生在宿舍上网收费的措施,为了解男女学生对这一措施的看法是否存在差异,分别抽取了200名男学生和200名女学生进行调查,其中的一个问题是:“你是否赞成采取上网收费的措施?”其中男学生表示赞成的比例为27%,女学生表示赞成的比例为35%。调查者认为,男学生中表示赞成的比例显著低于女学生。取显著性水平=0.05,样本提供的证据是否支持调查者的看法?2008年8月两个总体比例之差的检验
(例题分析)【例】一所大学准备采两个总体比例之差的检验
(例题分析)H0
:1-2
0H1
:1-2<0
=
0.05n1=200,
n2=200临界值(c):检验统计量:决策:结论:
拒绝H0(P=0.041837<
=0.05)样本提供的证据支持调查者的看法
-1.645Z0拒绝域2008年8月两个总体比例之差的检验
(例题分析)H0:1-2两个总体比例之差的检验
(例题分析)
【例】有两种方法生产同一种产品,方法1的生产成本较高而次品率较低,方法2的生产成本较低而次品率则较高。管理人员在选择生产方法时,决定对两种方法的次品率进行比较,如方法1比方法2的次品率低8%以上,则决定采用方法1,否则就采用方法2。管理人员从方法1生产的产品中随机抽取300个,发现有33个次品,从方法2生产的产品中也随机抽取300个,发现有84个次品。用显著性水平=0.01进行检验,说明管理人员应决定采用哪种方法进行生产?2008年8月两个总体比例之差的检验
(例题分析)【例】有两种方法生产两个总体比例之差的检验
(例题分析)H0
:2-18%H1
:2-1>8%
=
0.01n1=300,n2=300临界值(c):检验统计量:决策:结论:
拒绝H0(P
=1.22E-15<
=0.05)方法1的次品率显著低于方法2达8%,应采用方法1进行生产
-2.33Z0拒绝域2008年8月两个总体比例之差的检验
(例题分析)H0:2-16.3.3两个总体方差比的检验6.3两个总体参数的检验2008年8月6.3.3两个总体方差比的检验6.3两个总体参数的两个总体方差比的检验
(F检验)假定条件两个总体都服从正态分布,且方差相等两个独立的随机样本检验统计量2008年8月两个总体方差比的检验
(F检验)假定条件2008年8月两个总体方差比的检验
(图示)FF1-F总体方差比的1-的置信区间拒绝H0拒绝H02008年8月两个总体方差比的检验
(图示)FF1-F总体两个总体方差比的检验
(例题分析)【例】一家房地产开发公司准备购进一批灯泡,公司打算在两个供货商之间选择一家购买。这两家供货商生产的灯泡平均使用寿命差别不大,价格也很相近,考虑的主要因素就是灯泡使用寿命的方差大小。如果方差相同,就选择距离较近的一家供货商进货。为此,公司管理人员对两家供货商提供的样品进行了检测,得到的数据如右表。检验两家供货商灯泡使用寿命的方差是否有显著差异(=0.05)
两家供货商灯泡使用寿命数据
样本1650569622630596637628706617624563580711480688723651569709632样本25685405965554966466075625896365295846815396172008年8月两个总体方差比的检验
(例题分析)【例】一家房地产开发公司两个总体方差比的检验
(用Excel进行检验)第1步:选择“工具”下拉菜单,并选择【数据分析】第3步:在分析工具中选择【F-检验
双样本方差】第4步:当出现对话框后
在【变量1的区域】方框内键入数据区域
在【变量2的区域】方框内键入数据区域在【】框内键入给定的显著性水平选择输出区域选择【确定】
用Excel进行检验2008年8月两个总体方差比的检验
(用Excel进行检验)第1步:选择Excel中的统计函数ZTEST—计算Z检验的P值TDIST—计算t分布的概率TINV—计算t分布的临界值TTEST—计算t分布检验的P值FDIST—计算F分布的概率FINV—计算F分布的逆函数(临界值)FTEST—计算F检验(两个总体方差比的检验)单尾概率2008年8月Excel中的统计函数ZTEST—计算Z检验的P值2008年本章小节总体参数检验一个总体两个总体均值比例方差均值差比例差方差比独立样本匹配样本大样本F检验Z检验大样本小样本Z检验1222已知1222未知Z检验t检验大样本小样本Z检验2已知Z检验2未知t检验Z检验卡方检验2008年8月本章小节总体参数检验一个总体两个总体均值比例方差均值差比例差本章小节假设检验的基本原理一个总体参数的检验两个总体参数的检验用Excel进行检验利用P值进行检验2008年8月本章小节假设检验的基本原理2008年8月结束THANKS2008年8月结束THANKS2008年8月作者贾俊平统计学统
计
学
(第三版)
20082008年8月作者贾俊平统计学统计学
(第三版)
200
……正如一个法庭宣告某一判决为“无罪(notguilty)”而不为“清白(innocent)”,统计检验的结论也应为“不拒绝”而不为“接受”。
——JanKmenta统计名言2008年8月……正如一个法庭宣告某一判决统计名言2008年8月第6章假设检验6.1假设检验的基本问题6.2一个总体参数的检验6.3两个总体参数的检验2008年8月第6章假设检验6.1假设检验的基本问题20学习目标假设检验的基本思想和原理假设检验的步骤一个总体参数的检验两个总体参数的检验P值的计算与应用用Excel进行检验2008年8月学习目标假设检验的基本思想和原理2008年8月正常人的平均体温是37oC吗?当问起健康的成年人体温是多少时,多数人的回答是37oC,这似乎已经成了一种共识。下面是一个研究人员测量的50个健康成年人的体温数据37.136.936.937.136.436.936.636.236.736.937.636.737.336.936.436.137.136.636.536.737.136.236.337.536.937.036.736.937.037.136.637.236.436.637.336.137.137.036.636.936.737.236.337.136.736.837.037.036.137.02008年8月正常人的平均体温是37oC吗?当问起健康的成年人体温是多少正常人的平均体温是37oC吗?根据样本数据计算的平均值是36.8oC,标准差为0.36oC
根据参数估计方法得到的健康成年人平均体温的95%的置信区间为(36.7,36.9)。研究人员发现这个区间内并没有包括37oC因此提出“不应该再把37oC作为正常人体温的一个有任何特定意义的概念”我们应该放弃“正常人的平均体温是37oC”这个共识吗?本章的内容就将提供一套标准统计程序来检验这样的观点2008年8月正常人的平均体温是37oC吗?根据样本数据计算的平均值是36.1假设检验的基本原理
6.1.1怎样提出假设?6.1.2怎样做出决策?6.1.3怎样表述决策结果?第6章假设检验2008年8月6.1假设检验的基本原理第6章假设检验20086.1.1怎样提出假设?6.1假设检验的基本原理2008年8月6.1.1怎样提出假设?6.1假设检验的基本原理2什么是假设?
(hypothesis)在参数检验中,对总体参数的具体数值所作的陈述就一个总体而言,总体参数包括总体均值、比例、方差等分析之前必需陈述2008年8月什么是假设?
(hypothesis)在参数检验中,对总体什么是假设检验?
(hypothesistest)先对总体的参数(或分布形式)提出某种假设,然后利用样本信息判断假设是否成立的统计方法有参数检验和非参数检验逻辑上运用反证法,统计上依据小概率原理小概率是在一次试验中,一个几乎不可能发生的事件发生的概率在一次试验中小概率事件一旦发生,我们就有理由拒绝原假设2008年8月什么是假设检验?
(hypothesistest)先对总原假设
(nullhypothesis)又称“0假设”,研究者想收集证据予以反对的假设,用H0表示所表达的含义总是指参数没有变化或变量之间没有关系
最初被假设是成立的,之后根据样本数据确定是否有足够的证据拒绝它总是有符号,或H0:
=某一数值H0:
某一数值H0:
某一数值例如,H0:
10cmnull2008年8月原假设
(nullhypothesis)又称“0假设”,研也称“研究假设”,研究者想收集证据予以支持的假设,用H1或Ha表示所表达的含义是总体参数发生了变化或变量之间有某种关系备择假设通常用于表达研究者自己倾向于支持的看法,然后就是想办法收集证据拒绝原假设,以支持备择假设
总是有符号
,或H1:
某一数值H1:
某一数值H1:<某一数值备择假设(alternativehypothesis)2008年8月也称“研究假设”,研究者想收集证据予以支持的假设,用H1或H备择假设没有特定的方向性,并含有符号“”的假设检验,称为双侧检验或双尾检验(two-tailedtest)
备择假设具有特定的方向性,并含有符号“>”或“<”的假设检验,称为单侧检验或单尾检验(one-tailedtest)备择假设的方向为“<”,称为左侧检验
备择假设的方向为“>”,称为右侧检验
双侧检验与单侧检验2008年8月备择假设没有特定的方向性,并含有符号“”的假设检验,称为双双侧检验与单侧检验
(假设的形式)假设双侧检验单侧检验左侧检验右侧检验原假设H0:m
=m0H0:m
m0H0:m
m0备择假设H1:m
≠m0H1:m
<m0H1:m
>m0以总体均值的检验为例2008年8月双侧检验与单侧检验
(假设的形式)假设双侧检验单侧检验左侧【例】一种零件的生产标准是直径应为10cm,为对生产过程进行控制,质量监测人员定期对一台加工机床检查,确定这台机床生产的零件是否符合标准要求。如果零件的平均直径大于或小于10cm,则表明生产过程不正常,必须进行调整。试陈述用来检验生产过程是否正常的原假设和被择假设提出假设(例题分析)解:研究者想收集证据予以证明的假设应该是“生产过程不正常”。建立的原假设和备择假设为
H0:
10cmH1:
10cm
2008年8月【例】一种零件的生产标准是直径应为10cm,为对生产过程进行【例】某品牌洗涤剂在它的产品说明书中声称:平均净含量不少于500克。从消费者的利益出发,有关研究人员要通过抽检其中的一批产品来验证该产品制造商的说明是否属实。试陈述用于检验的原假设与备择假设提出假设(例题分析)解:研究者抽检的意图是倾向于证实这种洗涤剂的平均净含量并不符合说明书中的陈述。建立的原假设和备择假设为
H0:
500H1:
<5002008年8月【例】某品牌洗涤剂在它的产品说明书中声称:平均净含量不少于5【例】一家研究机构估计,某城市中家庭拥有汽车的比例超过30%。为验证这一估计是否正确,该研究机构随机抽取了一个样本进行检验。试陈述用于检验的原假设与备择假设提出假设(例题分析)解:研究者想收集证据予以支持的假设是“该城市中家庭拥有汽车的比例超过30%”。建立的原假设和备择假设为
H0:
30%H1:
30%2008年8月【例】一家研究机构估计,某城市中家庭拥有汽车的比例超过30%原假设和备择假设是一个完备事件组,而且相互对立在一项假设检验中,原假设和备择假设必有一个成立,而且只有一个成立先确定备择假设,再确定原假设等号“=”总是放在原假设上因研究目的不同,对同一问题可能提出不同的假设(也可能得出不同的结论)提出假设(结论与建议)200
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 配送在物流中的作用
- 中医护理学(第5版)课件 第九章针灸疗法与护理3十四经脉及其常用腧穴
- 交通运输行业智能交通与船舶导航方案
- 科技项目研究可行性研究报告
- 家庭智能家居控制系统的
- 股份制改革流程及关键文书编写指南
- 家庭园艺种植技术手册
- 项目申请书和可行性研究报告的关系
- 工厂项目可行性报告
- 企业人力资源管理师(三级)实操练习试题及答案
- 二零二五年度医疗健康产业贷款担保合同
- 2025年安徽医学高等专科学校单招职业适应性测试题库及答案一套
- 2025年赣西科技职业学院单招职业技能测试题库带答案
- 中国卒中学会急性缺血性卒中再灌注治疗指南+2024解读
- 2024医疗机构重大事故隐患判定清单(试行)学习课件
- 2018热控QC小组成果报告书
- 夹胶玻璃作业指导书
- NLP高效能沟通影响力集团李炫华
- 站长办公会议事规则
- EDTA络合滴定法测定银合金中的银
- 矿床成矿模式(PPT页)
评论
0/150
提交评论