真题汇总2022年山东省龙口市中考数学三年高频真题汇总-卷(Ⅲ)(含详解)_第1页
真题汇总2022年山东省龙口市中考数学三年高频真题汇总-卷(Ⅲ)(含详解)_第2页
真题汇总2022年山东省龙口市中考数学三年高频真题汇总-卷(Ⅲ)(含详解)_第3页
真题汇总2022年山东省龙口市中考数学三年高频真题汇总-卷(Ⅲ)(含详解)_第4页
真题汇总2022年山东省龙口市中考数学三年高频真题汇总-卷(Ⅲ)(含详解)_第5页
已阅读5页,还剩28页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在单位为1的方格中,有标号为①、②、③、④的四个三角形,其中直角三角形的个数为()A.1个 B.2个 C.3个 D.4个2、如图,在中,,,D、E分别在AB、AC上,,且是等腰直角三角形,其中,则AD的值是()A.1 B. C. D.3、如图,平行四边形ABCD的边BC上有一动点E,连接DE,以DE为边作矩形DEGF且边FG过点A.在点E从点B移动到点C的过程中,矩形DEGF的面积()A.先变大后变小 B.先变小后变大 C.一直变大 D.保持不变4、东东和爸爸一起出去运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,东东继续前行,5分钟后也原路返回,两人恰好同时到家.东东和爸爸在整个运动过程中离家的路程(米),(米)与运动时间(分)之间的函数关系如图所示,下列结论中错误的是()A.两人前行过程中的速度为180米/分 B.的值是15,的值是2700C.爸爸返回时的速度为90米/分 D.运动18分钟或31分钟时,两人相距810米5、有理数a,b在数轴上对应的位置如图所示,则下列结论正确的是().······线······○······封······○······密······○······内······○······号学 级年 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······6、有理数a,b在数轴上对应点的位置如图所示,下列各式正确的是()A.|a|>|b| B.a+b<0 C.a﹣b<0 D.ab>07、下列图标中,轴对称图形的是()A. B. C. D.8、下列宣传图案中,既中心对称图形又是轴对称图形的是()A. B. C. D.9、若一次函数的图像经过第一、三、四象限,则的值可能为()A.-2 B.-1 C.0 D.210、如图,AD,BE,CF是△ABC的三条中线,则下列结论正确的是()A. B. C. D.第Ⅱ卷(非选择题70分)二、填空题(5小题,每小题4分,共计20分)1、等腰三角形有两条边长分别为2cm、3cm,它的周长为_____.2、如图,两个多边形的面积分别为13和22,两个阴影部分的面积分别为a,,则的值为______.3、如图,5个大小形状完全相同的长方形纸片,在直角坐标系中摆成如图图案,己知点,则点A的坐标是__________.4、如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个长方形(不重叠无缝隙),则拼成的长方形的周长是_________.······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······5、如图,在中,,.点D、E分别在AB和AC边上,,把沿着直线DE翻折得,如果射线,那么______.三、解答题(5小题,每小题10分,共计50分)1、我们定义:在等腰三角形中,腰与底的比值叫做等腰三角形的正度.如图1,在△ABC中,AB=AC,的值为△ABC的正度.已知:在△ABC中,AB=AC,若D是△ABC边上的动点(D与A,B,C不重合).(1)若∠A=90°,则△ABC的正度为;(2)在图1,当点D在腰AB上(D与A、B不重合)时,请用尺规作出等腰△ACD,保留作图痕迹;若△ACD的正度是,求∠A的度数.(3)若∠A是钝角,如图2,△ABC的正度为,△ABC的周长为22,是否存在点D,使△ACD具有正度?若存在,求出△ACD的正度;若不存在,说明理由.2、甲、乙两人沿同一直道从A地去B地.已知A,B两地相距9000m,甲的步行速度为100m/min,他每走半个小时就休息15min,经过2小时到达目的地.乙的步行速度始终不变,他在途中不休息,在整个行程中,甲离A地的距离(单位:m)与时间x(单位:min)之间的函数关系如图所示(甲、乙同时出发,且同时到达目的地).(1)在图中画出乙离A地的距离(单位:m)与时间x之间的函数图象;(2)求甲、乙两人在途中相遇的时间.3、如图,已知在Rt中,,点为射线上一动点,且,点关于直线的对称点为点,射线与射线交于点.(1)当点在边上时,①求证:;②延长与边的延长线相交于点,如果与相似,求线段的长;(2)联结,如果,求的值.4、如图,在的正方形格纸中,是以格点为顶点的三角形,也称为格点三角形,请你在该正方形格纸中画出与成轴对称的所有的格点三角形(用阴影表示).······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······5、已知一次函数y=-3x+3的图象分别与x轴,y轴交于A,B两点,点C(3,0).(1)如图1,点D与点C关于y轴对称,点E在线段BC上且到两坐标轴的距离相等,连接DE,交y轴于点F.求点E的坐标;(2)△AOB与△FOD是否全等,请说明理由;(3)如图2,点G与点B关于x轴对称,点P在直线GC上,若△ABP是等腰三角形,直接写出点P的坐标.-参考答案-一、单选题1、D【解析】【分析】结合网格及勾股定理分别确定图中每个三角形中三条边的平方,然后结合直角三角形的判别条件判断即可.【详解】解:在①中,三边长分别为:2,3,,∵2²+3²=,∴①是直角三角形;在②中,三边长分别为:2,,,∵,∴②是直角三角形;在③中,三边长分别为:2,,,∵,∴③是直角三角形;在④中,三边长分别为:,2,5,∵,∴④是直角三角形;综上所述,直角三角形的个数为4.故选D.【点睛】本题考查了勾股定理及其逆定理的应用,解题的关键是灵活运用勾股定理解决问题.2、C【解析】【分析】根据等腰三角形的性质可得:,,为等腰三角形,过点D作于G,过点B作于H,利用全等三角形的判定和性质可得,,,在中,利用角的特殊性质即可得.【详解】解:在中,,,∴,∵是等腰直角三角形,∴,······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······∴,∴,∴为等腰三角形,如图所示:过点D作于G,过点B作于H,∵,∴,∴在与中,,∴,∴,,在中,,∴,故选:C.【点睛】题目主要考查等腰三角形的判定和性质,全等三角形的判定和性质,直角三角形中角的特殊性质,理解题意,作出辅助线,综合运用这些知识点是解题关键.3、D【解析】【分析】连接AE,根据,推出,由此得到答案.【详解】解:连接AE,∵,∴,故选:D..【点睛】此题考查了平行四边形的性质,矩形的性质,正确连接辅助线AE是解题的关键.4、D【解析】【分析】两人同行过程中的速度就是20分钟前进3600千米的速度,即可判断A;东东在爸爸返回5分钟后返回即第20分钟返回,即可得到m=15,由此即可计算出n的值和爸爸返回的速度,即可判断B、C;分······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······【详解】解:∵3600÷20=180米/分,∴两人同行过程中的速度为180米/分,故A选项不符合题意;∵东东在爸爸返回5分钟后返回即第20分钟返回∴m=20-5=15,∴n=180×15=2700,故B选项不符合题意;∴爸爸返回的速度=2700÷(45-15)=90米/分,故C选项不符合题意;∵当运动18分钟时,爸爸离家的距离=2700-90×(18-15)=2430米,东东离家的距离=180×18=3240米,∴运动18分钟时两人相距3240-2430=810米;∵返程过程中东东45-20=25分钟走了3600米,∴东东返程速度=3600÷25=144米/分,∴运动31分钟时东东离家的距离=3600-144×(31-20)=2016米,爸爸离家的距离=2700-90×(31-15)=1260米,∴运动31分钟两人相距756米,故D选项符合题意;故选D.【点睛】本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像.5、D【解析】【分析】先根据数轴可得,再根据有理数的减法法则、绝对值性质逐项判断即可得.【详解】解:由数轴的性质得:.A、,则此项错误;B、,则此项错误;C、,则此项错误;D、,则此项正确;故选:D.【点睛】本题考查了数轴、有理数的减法、绝对值,熟练掌握数轴的性质是解题关键.6、C【解析】【分析】先根据数轴上点的位置,判断数a、b的正负和它们绝对值的大小,再根据加减法、乘法法则确定正确选项.【详解】解:由数轴知:﹣1<a<0<1<b,|a|<|b|,∴选项A不正确;a+b>0,选项B不正确;∵a<0,b>0,∴ab<0,选项D不正确;∵a<b,∴a﹣b<0,选项C正确,······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······【点睛】本题考查了数轴上点的位置、有理数的加减法、乘法法则.理解加减法法则和乘法的符号法则是解决本题的关键.7、A【解析】【详解】解:A、是轴对称图形,故本选项符合题意;B、不是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项不符合题意;故选:A【点睛】本题主要考查了轴对称图形的定义,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.8、C【解析】【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A.是轴对称图形,不是中心对称图形,故本选项不合题意;B.不是轴对称图形,也不是中心对称图形,故本选项不合题意;C.既是轴对称图形,又是中心对称图形,故本选项符合题意;D.不是轴对称图形,也不是中心对称图形,故本选项不合题意.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.9、D【解析】【分析】利用一次函数图象与系数的关系可得出m-1>0,解之即可得出m的取值范围,再对照四个选项即可得出结论.【详解】解:∵一次函数y=(m-1)x-1的图象经过第一、三、四象限,∴m-1>0,∴m>1,∴m的值可能为2.故选:D.【点睛】本题考查了一次函数图象与系数的关系、解一元一次不等式,牢记“k>0,b<0⇔y=kx+b的图象经过一、三、四象限”是解题的关键.10、B【解析】【分析】······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······【详解】解:∵AD、BE、CF是△ABC的三条中线,∴AE=EC=AC,AB=2BF=2AF,BC=2BD=2DC,故A、C、D都不一定正确;B正确.故选:B.【点睛】本题考查了三角形的中线的定义:三角形一边的中点与此边所对顶点的连线叫做三角形的中线.二、填空题1、##【分析】根据2cm、3cm可分别作等腰三角形的腰,结合三边关系定理,分别讨论求解.【详解】解:当2为腰时,三边为2,2,3,因为2+2<3,不能构成三角形,当3为腰时,三边为3,3,2,符合三角形三边关系定理,周长为:2+3+3=(2+6)(cm).故答案为:(2+6)cm.【点睛】本题考查了二次根式加减和三角形三边关系,解题关键是熟练运用二次根式加减法则进行计算,注意能否构成三角形.2、9【分析】由重叠部分面积为c,(b-a)可理解为(b+c)-(a+c),即两个多边形面积的差.【详解】解:设重叠部分面积为c,b-a=(b+c)-(a+c)=22-13=9.故答案为:9.【点睛】本题考查了等积变换,添括号,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键.3、(-3,9)【分析】设长方形纸片的长为x,宽为y,根据点B的坐标,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再结合点A的位置,即可得出点A的坐标.【详解】解:设长方形纸片的长为x,宽为y,依题意,得:,解得:,∴x-y=3,x+2y=9,∴点A的坐标为(-3,6).故答案为:(-3,9).【点睛】本题考查了二元一次方程组的应用以及坐标与图形性质,找准等量关系,正确列出二元一次方程组是······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······4、4m+12m【分析】根据面积的和差,可得长方形的面积,根据长方形的面积公式,可得长方形的长,根据长方形的周长公式,可得答案.【详解】解:由面积的和差,得长方形的面积为(m+3)2-m2=(m+3+m)(m+3-m)=3(2m+3).由长方形的宽为3,可得长方形的长是(2m+3),长方形的周长是2[(2m+3)+3]=4m+12.故答案为:4m+12.【点睛】本题考查了平方差公式的几何背景,整式的加减,利用了面积的和差.熟练掌握运算法则是解本题的关键.5、【分析】先根据折叠得到DE平分,根据角平分线过D作两边垂线即可.【详解】过D作DM⊥AC于M,过B作BH⊥AC于H∵,,∴,,,∴∴过D作DG⊥EF交EF于N,交AC于G∵把沿着直线DE翻折得∴DE平分,∴,∵∴DG∥BC∴,······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······∴∵∴∴故答案为:【点睛】本题难度比较大,综合考查折叠的性质、三角函数、相似三角形的性质与判定,解题的关键是由折叠得到角平分线再根据角平分线作垂线.三、解答题1、(1)(2)图见解析,∠A=45°(3)存在,正度为或.【解析】【分析】(1)当∠A=90°,△ABC是等腰直角三角形,故可求解;(2)根据△ACD的正度是,可得△ACD是以AC为底的等腰直角三角形,故可作图;(3)由△ABC的正度为,周长为22,求出△ABC的三条边的长,然后分两种情况作图讨论即可求解.【详解】(1)∵∠A=90°,则△ABC是等腰直角三角形∴AB=AC∵AB2+AC2=BC2∴BC=2∴△ABC的正度为AB故答案为:;(2)∵△ACD的正度是,由(1)可得△ACD是以AC为底的等腰直角三角形故作CD⊥AB于D点,如图,△ACD即为所求;∵△ACD是以AC为底的等腰直角三角形∴∠A=45°;(3)存在∵△ABC的正度为,∴=,设:AB=3x,BC=5x,则AC=3x,∵△ABC的周长为22,∴AB+BC+AC=22,即:3x+5x+3x=22,∴x=2,∴AB=3x=6,BC=5x=10,AC=3x=6,分两种情况:······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······过点A作AE⊥BC于点E,∵AB=AC,∴BE=CE=BC=5,∵CD=6,∴DE=CD−CE=1,在Rt△ACE中,由勾股定理得:AE=62在Rt△AED中,由勾股定理得:AD=A∴△ACD的正度=ACAD②当AD=CD时,如图由①可知:BE=5,AE=11,∵AD=CD,∴DE=CE−CD=5−AD,在Rt△ADE中,由勾股定理得:AD2−DE2=AE2,即:AD2−(5−AD)2=11,解得:AD=185∴△ACD的正度=ADAC综上所述存在两个点D,使△ABD具有正度.△ABD的正度为或.【点睛】此题考查了等腰三角形的性质,解题的关键是理解正度的含义、熟知勾股定理与等腰三角形的性质.2、(1)图象见解析;(2)甲、乙两人在途中相遇的时间为40分钟,60分钟和80分钟的时候.【解析】【分析】(1)根据乙的步行速度始终不变,且他在途中不休息,即直接连接原点和点(120,9000)即可;(2)根据图象可判断甲、乙两人在途中相遇3次,分段计算,利用待定系数法结合图象即可求出相遇的时间.(1)乙离A地的距离(单位:m)与时间x之间的函数图像,如图即是.······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······(2)根据题意结合图象可知甲、乙两人在途中相遇3次.如图,第一次相遇在AB段,第二次相遇在BC段,第三次相遇在CD段,根据题意可设的解析式为:,∴,解得:,∴的解析式为.∵甲的步行速度为100m/min,他每走半个小时就休息15min,∴甲第一次休息时走了米,对于,当时,即,解得:.故第一次相遇的时间为40分钟的时候;设BC段的解析式为:,根据题意可知B(45,3000),D(75,6000).∴,解得:,故BC段的解析式为:.相遇时即,故有,解得:.故第二次相遇的时间为60分钟的时候;对于,当时,即,解得:.故第三次相遇的时间为80分钟的时候;综上,甲、乙两人在途中相遇的时间为40分钟,60分钟和80分钟的时候.【点睛】本题考查一次函数的实际应用.理解题意,掌握利用待定系数法求函数解析式是解答本题的关键.3、(1)①见解析;②(2)3或4【解析】【分析】(1)①如图1,连接CE,DE,根据题意,得到CB=CE=CA,利用等腰三角形的底角与顶角的关系,三角形外角的性质,可以证明;······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······②连接BE,交CD于定Q,利用三角形外角的性质,确定△DCB∽△BGE······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······(2)分点D在AB上和在AB的延长上,两种情形,运用等腰三角形的性质,勾股定理分别计算即可.(1)①如图1,连接CE,DE,∵点B关于直线CD的对称点为点E,∴CE=CB,BD=DE,∠ECD=∠BCD,∠ACE=90°-2∠ECD,∵AC=BC,∴AC=EC,∴∠AEC=∠ACE,∵2∠AEC=180°-∠ACE=180°-90°+2∠ECD,∴∠AEC=45°+∠ECD,∵∠AEC=∠AFC+∠ECD,∴∠AEC=45°+∠ECD=∠AFC+∠ECD,∴∠AFC=45°;②连接BE,交CD于定Q,根据①得∠EAB=∠DCB,∠AFC=45°,∵点B关于直线CD的对称点为点E,∴∠EFC=∠BFC=45°,CF⊥BE,∴BF⊥AG,△BEF是等腰直角三角形,BF=EF,∵∠BEG>∠EAB,与相似,∴△DCB∽△BGE,∴∠EAB=∠DCB=∠BGE,∠DBC=∠BEG=45°,∴AB=BG,∠EAB+∠EBA=∠EAB+∠BGE,∴∠EAB=∠EBA=∠BGE,∴AE=BE=BF=EF,∵BF⊥AG,∴AF=FG=AE+EF=BE+EF=BE+BE=BE,∴GE=EF+FG=BE+BE=BE,∴=,∵△DCB∽△BGE,∴,······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······∴BD==,(2)过点C作CM⊥AE,垂足为M,根据①②知,△ACE是等腰三角形,△BEF是等腰直角三角形,∴AM=ME,BF⊥AF,设AM=ME=x,CM=y,∵AC=BC=5,∠ACB=90°,,∴,AB=,xy=12,∴==49,∴x+y=7或x+y=-7(舍去);∴==1,∴x-y=1或x-y=-1;∴或∴或∴或∴AE=8或AE=6,当点D在AB上时,如图3所示,AE=6,设BF=EF=m,∴,∴,解得m=1,m=-7(舍去),∴=3;当点D在AB的延长线上时,如图4所示,AE=8,······线······○······封······○······密······○······内······○······号学 级年 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······∴,∴,解得n=1,n=7(舍去),∴=4;∴或.【点睛】本题考查了轴对称的性质,等腰直角三角形的判定性质,等腰三角形的判定和性质,完全平方公式,勾股定理,三角形相似的判定和性质,一元二次方程的解法,分类思想,熟练掌握勾股定理,三角形的相似,一元二次方程的解法是解题的关键.4、见详解【解析】【分析】先找对称轴,再得到个点的对应点,即可求解.【详解】解:根据题意画出图形,如下图所示:【点睛】本题主要考查了画轴对称图形,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.5、(1)E(32,3(2)△AOB≌△FOD,理由见详解;(3)P(0,-3)或(4,1)或(,).【解析】【分析】(1)连接OE,过点E作EG⊥OC于点G,EH⊥OB于点H,首先求出点A,点B,点C,点D

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论