




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第15章电力系统稳定运行的基本概念
15-1概述稳定运行状态:系统中的同步电机(主要是发电机)都处于同步运行状态。即所有并联运行的同步电机都有相同的电角速度。电力系统稳定性问题:电力系统在运行中受到扰动后能否继续保持系统中同步电机间同步运行的问题。由于稳定性是根据电机转子之间相对位移角的变化来判别是否同步的,所以又称为功角稳定问题。
第15章电力系统稳定运行的基本概念
15-1概述115-2功角的概念
图15-1所示,一个单机-无穷大容量母线的简单系统,受端电压V的幅值和频率均不变。15-2功角的概念图15-1所示,一个单机-无穷大容2由图15-2的相量图容易推得发电机输出功率为系统总电抗Xd∑=Xd+XT1+XL/2+XT2由图15-2的相量图容易推得发电机输出功率为系统总电抗X3当Eq和V恒定时,传输功率Pe是角度δ的正弦函数,因传输功率的大小与δ密切相关,所以δ称为“功角”,功和角的关系Pe=f(δ)称为“功角特性”。图15-3就是简单系统的功角特性。当Eq和V恒定时,传输功率Pe是角度δ的正弦函数,因传输4电力系统稳定运行和基本概念课件5功角δ在电力系统稳定研究中占有特殊地位,它除了表示发电机电势和无穷大系统之间的相位差外(时间概念),更重要的是它还表明了各发电机转子之间的相对位置。(空间概念)如图5-14所示。功角δ在电力系统稳定研究中占有特殊地位,它除了表示发电机电势6电力系统稳定运行和基本概念课件7稳定研究方法:1.静态稳定分析:自动控制理论的方法微分方程线性化(小干扰法)研究线性微分方程特征根(频域法)2.暂态稳定分析:非线性微分方程数值解法(时域法)大干扰下不适合线性化稳定研究方法:815-3静态稳定的初步概念电力系统静态稳定性:系统在运行中受到微小扰动后,独立地恢复原来的运行状态的能力简单电力系统静态稳定的判据:15-3静态稳定的初步概念电力系统静态稳定性:系统在运行9电力系统稳定运行和基本概念课件10电力系统稳定运行和基本概念课件1115-4暂态稳定的初步概念
电力系统暂态稳定性:电力系统在正常运行时,受到大的扰动后,能从原来的运行状态不失同步地过渡到新的运行状态,并在新状态下稳定运行。简单电力系统的暂稳判据:等面积定则15-4暂态稳定的初步概念电力系统暂态稳定性:电力系统12[大扰动现象]切除一回输电线路,如图15-7所示。[大扰动现象]切除一回输电线路,如图15-7所示。13切除前的正常运行时
系统总电抗Xd∑I=Xd+XT1+XL/2+XT2
切除一回线路后
系统总电抗Xd∑II=Xd+XT1+XL+XT2切除前的正常运行时14电力系统稳定运行和基本概念课件15电力系统稳定运行和基本概念课件16电力系统稳定运行和基本概念课件1715-5负荷稳定的概念
负荷稳定性:负荷在正常运行中受到扰动后能保持某一恒定转差s继续运行的能力。负荷稳定性是电力系统稳定性的一个重要方面。15-5负荷稳定的概念负荷稳定性:负荷在正常运行中受到18异步电动机的电磁转矩为为异步电动机定、转子漏抗之和。异步电动机的转矩、转差特性如图15-10所示。异步电动机的电磁转矩为为异步电动机定、转子漏抗之和。异步电动19电力系统稳定运行和基本概念课件20负荷稳定判据或负荷稳定判据或2115-6电压稳定性的概念
负荷节点的电压稳定。如图10-14(P24)所示单机简单电力系统不存在功角稳定问题,但却存在电压稳定问题。15-6电压稳定性的概念负荷节点的电压稳定。22假设:输电线路总阻抗为负荷等值阻抗为据电压相量图,由余弦定理可得假设:输电线路总阻抗为负荷等值阻抗为据电压相量图,由余弦定理23将代入可得将代入可得24当电源电势一定。输电系统阻抗和负荷功率因数一定时,受端电压和功率为负荷阻抗幅值或输电系统阻抗与负荷阻抗比值的函数。分析:受端功率P达到最大值,为当电源电势一定。输电系统阻抗和负荷功率因数一定时,受端电压和25当由零变化到无穷大时,受端电压将由E单调下降到零;当时,受端功率达到极限,相对应的电压为临界电压,其值为当由零变化到无穷大时,受端电压将26受端电压和功率随负荷阻抗变化的曲线受端电压和功率随负荷阻抗变化的曲线27功率极限与负荷功率因数的关系分析:⑴⑵功率极限与负荷功率因数的关系分析:⑴⑵28可见,越小(即越大),功率极限越小,相应的临界电压越低;当负荷为超前功率因数,即时,在功率因数角变化的一定范围内,功率极限将会随着功率因数的减小而增大,相应的临界电压也会升高。当时,功率极限有最大值,为⑶⑷可见,越小(即越大),功率极限越29这种情况下输电系统总阻抗与负荷等值阻抗的关系如下:供电点的输出功率为:送达负荷点的功率仅为供电点功率的一半,输电效率为50%。这种情况下输电系统总阻抗与负荷等值阻抗的关系如下:供电点的输30负荷节点的电压为:负荷节点的电压为:31分析电压稳定时,假定条件是:⑴系统频率保持不变;⑵发电机电势不变;⑶阻抗ZS不变。唯一的变量是负荷等值阻抗ZLD。由此可得在给定功率因数下的P-|zs/zLD|曲线和相应的V-|zs/zLD|曲线如图10-15所示。分析电压稳定时,假定条件是:32电力系统稳定运行和基本概念课件33电网固有功率传输特性:分析图10-15可知:当|zs/zLD|<1时,zLD↓,负荷从电网吸收的P↑,系统能供应较多的功率;当|zs/zLD|=1时,负荷从电网吸收功率达最大值;当|zs/zLD|>1时,若zLD↓,负荷所需P↑),但电网能供给的P反而减少。功率失衡加剧,负荷zLD进一步自动减小(如电动机s增大),电压随之迅速下降,如此恶性循环导致“电压崩溃”。
电网固有功率传输特性:34电网固有电压特性:当zLD↓时,负荷节点电压呈单调下降趋势。当系统运行在P-|zs/zLD|曲线的上升段时,负荷有功功率的暂时供需失衡,依靠网络和负荷的固有特性总可以恢复平衡,系统稳定,只是电压有所下降;当系统运行在P-|zs/zLD|曲线的下降段时,负荷因需求功率的增加而减小阻抗,电网送达的功率反而减少,导致功率不平衡加剧。分析:电网固有电压特性:当系统运行在P-|zs/zLD|曲线的35根据负荷特性,此时负荷阻抗将继续减少,负荷节点电压随之迅速下降,从而会引发“电压崩溃”。
可见,电压平衡是负荷维持功率平衡而调节阻抗的特性与网络的功率传输特性相互作用的结果。说明:⑴负荷功率因数(滞后)不同时,P-|zs/zLD|曲线和V-|zs/zLD|曲线的形状不变;⑵功率因数变小时,对应于相同|zs/zLD|值的功率P和电压V均要减小;根据负荷特性,此时负荷阻抗将继续减少,负荷节36说明:⑶负荷失稳与电压失稳的关系。(P161例析)电压失稳是负荷失稳的一种外在表现。⑷电压稳定性判据(分析如下)。说明:37⑴曲线的右分支相当于P-|zs/zLD|曲线的上升段,负荷节点电压的下降可以换取网络送达功率的增加,系统运行具有电压稳定;⑵曲线的左分支相当于P-|zs/zLD|曲线的下降段,电压的下降将导致送达功率的减少,系统运行不具有电压稳定;⑴曲线的右分支相当于P-|zs/zLD|曲线的上升段,负38负荷节点静态电压稳定判据负荷节点静态电压稳定判据3915-7发电机转子运动方程一、转子运动方程旋转物体(发电机转子)的牛顿运动方程:
15-7发电机转子运动方程一、转子运动方程40J——转动惯量(kg·m·s2)A——角加速度(rad/s2)Ω——机械角速度(rad/s)Θ——从某一固定参考轴算起的空间角位移(rad)ΔM=MT-Me——净加速转矩(kg·m)由于δ还具有空间位置的意义,故可通过它将电力系统中的机械运动和电磁运动联系起来。J——转动惯量(kg·m·s2)由于δ还具有空间位置的意义,41如发电机的极对数为p,则电气角θ、电气角速度ω、加速度α与实际空间各对应量的关系
θ=pΘ
ω=pΩ
α=pA参考轴有两种:静止轴ω=0(固定位置),同步旋转轴ω=ωN(固定转速,常用)记发电机i的电角度、角加速度分别为:相对于静止轴
θi
ωi相对于同步轴
δi
Δωi如发电机的极对数为p,则电气角θ、电气角速度ω、加速度α与实42电力系统稳定运行和基本概念课件43于是有:表明角加速度与参考轴的选择无关。
于是有:表明角加速度与参考轴的选择无关。44在多机系统中,发电机i、j之间:
δij=δi-δj
称为相对位置角(功角)
Δωij=ωi-ωj
称为相对角速度而相对于同步参考轴:
δi或δj称为“绝对”位置角(功角)
Δωi或Δωj=ωi-ωj
称为“绝对”角速度在多机系统中,发电机i、j之间:45二、标幺值表示的转子运动方程这里主要是为了把转子运动方程转成电气方程形式。将式(15-15)所有项都乘极对数p,计及式(15-6)、(15-9)可得选转矩基准值MB=SB/ΩN,上式两边除以MB得二、标幺值表示的转子运动方程选转矩基准值MB=SB/ΩN,上46定义,则
这就是转子运动方程的电气标幺值形式。量纲:TJ(s);δ(弧度);ωN(2πfN);等号右边各量为标幺值,无量纲。
定义,则这就是转子运动方程的47转子运动方程的另外几种形式时间的标幺值:定义时间的基准值为:则时间的标幺值为:故转子运动方程可改写为:转子运动方程的另外几种形式时间的标幺值:定义时间的基准值为:48转子运动方程的状态方程形式转子运动方程的状态方程形式49用转差率表示的转子运动方程因为所以故有:用转差率表示的转子运动方程因为所以故有:50三、惯性时间常数的意义
定义为发电机额定转矩,并设MB=MN(取本台机的额定值为基准值),则
物理意义:设原动机输入额定转矩MT*=1,没有带负荷Me*=0,故ΔMa*=1;将上式两边对t积分,相应的Ω*从0到1,可得三、惯性时间常数的意义定义为发电机额定转51TJN=原动机以额定且恒定的转矩将转子从静止拖动至额定转速所需的时间。查手册计算公式:多机系统分析:将第i台机在SNi下的值TJNi归算到系统统一的基准值SB有TJN=原动机以额定且恒定的转矩将转子从静止拖动至额定转速所52一个发电厂的n台机组合并成一台等值机时,其等值惯性时间常数为
一个发电厂的n台机组合并成一台等值机时,53这样,多机系统中第i台发电机的转子运动方程为(略去表示标幺值的*号):这个方程组的解δi就可以用于描述扰动后发电机之间的相对运动(δi-δj),据此可直接判断系统稳定性。这样,多机系统中第i台发电机的转子运动方这个方程组的解δi就54方程从形式上看是简单的二阶常微分方程,但右边的不平衡转矩却是很复杂的函数:①MTi(或PTi)主要取决于本台机组的原动机及其调速系统的特性;②Mei(或Pei)除了与自身的电磁特性、励磁特性有关外,还与其它机组、系统结构、系统负荷等许多因数有关。前面所学的“元件功率特性”、“简单供电系统功率特性”、“潮流计算”等知识都是在系统稳定研究中确定Pei的必要知识。下面专门讨论电磁功率Pei。方程从形式上看是简单的二阶常微分方程,但右边的不平衡转矩却是55
第15章电力系统稳定运行的基本概念
15-1概述稳定运行状态:系统中的同步电机(主要是发电机)都处于同步运行状态。即所有并联运行的同步电机都有相同的电角速度。电力系统稳定性问题:电力系统在运行中受到扰动后能否继续保持系统中同步电机间同步运行的问题。由于稳定性是根据电机转子之间相对位移角的变化来判别是否同步的,所以又称为功角稳定问题。
第15章电力系统稳定运行的基本概念
15-1概述5615-2功角的概念
图15-1所示,一个单机-无穷大容量母线的简单系统,受端电压V的幅值和频率均不变。15-2功角的概念图15-1所示,一个单机-无穷大容57由图15-2的相量图容易推得发电机输出功率为系统总电抗Xd∑=Xd+XT1+XL/2+XT2由图15-2的相量图容易推得发电机输出功率为系统总电抗X58当Eq和V恒定时,传输功率Pe是角度δ的正弦函数,因传输功率的大小与δ密切相关,所以δ称为“功角”,功和角的关系Pe=f(δ)称为“功角特性”。图15-3就是简单系统的功角特性。当Eq和V恒定时,传输功率Pe是角度δ的正弦函数,因传输59电力系统稳定运行和基本概念课件60功角δ在电力系统稳定研究中占有特殊地位,它除了表示发电机电势和无穷大系统之间的相位差外(时间概念),更重要的是它还表明了各发电机转子之间的相对位置。(空间概念)如图5-14所示。功角δ在电力系统稳定研究中占有特殊地位,它除了表示发电机电势61电力系统稳定运行和基本概念课件62稳定研究方法:1.静态稳定分析:自动控制理论的方法微分方程线性化(小干扰法)研究线性微分方程特征根(频域法)2.暂态稳定分析:非线性微分方程数值解法(时域法)大干扰下不适合线性化稳定研究方法:6315-3静态稳定的初步概念电力系统静态稳定性:系统在运行中受到微小扰动后,独立地恢复原来的运行状态的能力简单电力系统静态稳定的判据:15-3静态稳定的初步概念电力系统静态稳定性:系统在运行64电力系统稳定运行和基本概念课件65电力系统稳定运行和基本概念课件6615-4暂态稳定的初步概念
电力系统暂态稳定性:电力系统在正常运行时,受到大的扰动后,能从原来的运行状态不失同步地过渡到新的运行状态,并在新状态下稳定运行。简单电力系统的暂稳判据:等面积定则15-4暂态稳定的初步概念电力系统暂态稳定性:电力系统67[大扰动现象]切除一回输电线路,如图15-7所示。[大扰动现象]切除一回输电线路,如图15-7所示。68切除前的正常运行时
系统总电抗Xd∑I=Xd+XT1+XL/2+XT2
切除一回线路后
系统总电抗Xd∑II=Xd+XT1+XL+XT2切除前的正常运行时69电力系统稳定运行和基本概念课件70电力系统稳定运行和基本概念课件71电力系统稳定运行和基本概念课件7215-5负荷稳定的概念
负荷稳定性:负荷在正常运行中受到扰动后能保持某一恒定转差s继续运行的能力。负荷稳定性是电力系统稳定性的一个重要方面。15-5负荷稳定的概念负荷稳定性:负荷在正常运行中受到73异步电动机的电磁转矩为为异步电动机定、转子漏抗之和。异步电动机的转矩、转差特性如图15-10所示。异步电动机的电磁转矩为为异步电动机定、转子漏抗之和。异步电动74电力系统稳定运行和基本概念课件75负荷稳定判据或负荷稳定判据或7615-6电压稳定性的概念
负荷节点的电压稳定。如图10-14(P24)所示单机简单电力系统不存在功角稳定问题,但却存在电压稳定问题。15-6电压稳定性的概念负荷节点的电压稳定。77假设:输电线路总阻抗为负荷等值阻抗为据电压相量图,由余弦定理可得假设:输电线路总阻抗为负荷等值阻抗为据电压相量图,由余弦定理78将代入可得将代入可得79当电源电势一定。输电系统阻抗和负荷功率因数一定时,受端电压和功率为负荷阻抗幅值或输电系统阻抗与负荷阻抗比值的函数。分析:受端功率P达到最大值,为当电源电势一定。输电系统阻抗和负荷功率因数一定时,受端电压和80当由零变化到无穷大时,受端电压将由E单调下降到零;当时,受端功率达到极限,相对应的电压为临界电压,其值为当由零变化到无穷大时,受端电压将81受端电压和功率随负荷阻抗变化的曲线受端电压和功率随负荷阻抗变化的曲线82功率极限与负荷功率因数的关系分析:⑴⑵功率极限与负荷功率因数的关系分析:⑴⑵83可见,越小(即越大),功率极限越小,相应的临界电压越低;当负荷为超前功率因数,即时,在功率因数角变化的一定范围内,功率极限将会随着功率因数的减小而增大,相应的临界电压也会升高。当时,功率极限有最大值,为⑶⑷可见,越小(即越大),功率极限越84这种情况下输电系统总阻抗与负荷等值阻抗的关系如下:供电点的输出功率为:送达负荷点的功率仅为供电点功率的一半,输电效率为50%。这种情况下输电系统总阻抗与负荷等值阻抗的关系如下:供电点的输85负荷节点的电压为:负荷节点的电压为:86分析电压稳定时,假定条件是:⑴系统频率保持不变;⑵发电机电势不变;⑶阻抗ZS不变。唯一的变量是负荷等值阻抗ZLD。由此可得在给定功率因数下的P-|zs/zLD|曲线和相应的V-|zs/zLD|曲线如图10-15所示。分析电压稳定时,假定条件是:87电力系统稳定运行和基本概念课件88电网固有功率传输特性:分析图10-15可知:当|zs/zLD|<1时,zLD↓,负荷从电网吸收的P↑,系统能供应较多的功率;当|zs/zLD|=1时,负荷从电网吸收功率达最大值;当|zs/zLD|>1时,若zLD↓,负荷所需P↑),但电网能供给的P反而减少。功率失衡加剧,负荷zLD进一步自动减小(如电动机s增大),电压随之迅速下降,如此恶性循环导致“电压崩溃”。
电网固有功率传输特性:89电网固有电压特性:当zLD↓时,负荷节点电压呈单调下降趋势。当系统运行在P-|zs/zLD|曲线的上升段时,负荷有功功率的暂时供需失衡,依靠网络和负荷的固有特性总可以恢复平衡,系统稳定,只是电压有所下降;当系统运行在P-|zs/zLD|曲线的下降段时,负荷因需求功率的增加而减小阻抗,电网送达的功率反而减少,导致功率不平衡加剧。分析:电网固有电压特性:当系统运行在P-|zs/zLD|曲线的90根据负荷特性,此时负荷阻抗将继续减少,负荷节点电压随之迅速下降,从而会引发“电压崩溃”。
可见,电压平衡是负荷维持功率平衡而调节阻抗的特性与网络的功率传输特性相互作用的结果。说明:⑴负荷功率因数(滞后)不同时,P-|zs/zLD|曲线和V-|zs/zLD|曲线的形状不变;⑵功率因数变小时,对应于相同|zs/zLD|值的功率P和电压V均要减小;根据负荷特性,此时负荷阻抗将继续减少,负荷节91说明:⑶负荷失稳与电压失稳的关系。(P161例析)电压失稳是负荷失稳的一种外在表现。⑷电压稳定性判据(分析如下)。说明:92⑴曲线的右分支相当于P-|zs/zLD|曲线的上升段,负荷节点电压的下降可以换取网络送达功率的增加,系统运行具有电压稳定;⑵曲线的左分支相当于P-|zs/zLD|曲线的下降段,电压的下降将导致送达功率的减少,系统运行不具有电压稳定;⑴曲线的右分支相当于P-|zs/zLD|曲线的上升段,负93负荷节点静态电压稳定判据负荷节点静态电压稳定判据9415-7发电机转子运动方程一、转子运动方程旋转物体(发电机转子)的牛顿运动方程:
15-7发电机转子运动方程一、转子运动方程95J——转动惯量(kg·m·s2)A——角加速度(rad/s2)Ω——机械角速度(rad/s)Θ——从某一固定参考轴算起的空间角位移(rad)ΔM=MT-Me——净加速转矩(kg·m)由于δ还具有空间位置的意义,故可通过它将电力系统中的机械运动和电磁运动联系起来。J——转动惯量(kg·m·s2)由于δ还具有空间位置的意义,96如发电机的极对数为p,则电气角θ、电气角速度ω、加速度α与实际空间各对应量的关系
θ=pΘ
ω=pΩ
α=pA参考轴有两种:静止轴ω=0(固定位置),同步旋转轴ω=ωN(固定转速,常用)记发电机i的电角度、角加速度分别为:相对于静止轴
θi
ωi相对于同步轴
δi
Δωi如发电机的极对数为p,则电气角θ、电气角速度ω、加速度α与实97电力系统稳定运行和基本概念课件98于是有:表明角加速度与参考轴的选择无关。
于是有:表明角加速度与参考轴的选择无关。99在多机系统中,发电机i、j之间:
δij=δi-δj
称为相对位置角(功角)
Δωij=ωi-ωj
称为相对角速度而相对于同步参考轴:
δi或δj称为“绝对”位置角(功角)
Δωi或Δωj=ωi-ωj
称为“绝对”角速度在多机系统中,发电机i、j之间:100二、标幺值表示的转子运动方程这里主要是为了把转子运动方程转成电气方程形式。将式(15-15)所有项都乘极对数p,计及式(15-6)、(15-9)可得选转矩基准值MB=SB/ΩN,上式两边除以MB得二、标幺值表示的转子运动方程选转矩基准值MB=SB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年供货合同的范本
- 2025公寓房屋购买合同
- 2025路灯广告牌制作安装合同(范本)
- 2025光伏发电项目工程承包合同(最终版)
- 深圳辅警考试真题试卷及答案解析
- 胶合板企业市场营销策略分析考核试卷
- 2025年中国PVC行李牌数据监测研究报告
- 人工智能在数字娱乐与虚拟现实中的体验升级考核试卷
- 电子元器件在智能家居温控系统中的应用考核试卷
- 绢纺和丝织的产学研合作模式探索考核试卷
- 西部计划考试考题及答案
- 译林版英语三年级下册单词表
- 学校德育管理体系
- 青年博物馆文创产品消费研究:一个社会实践分析视角
- 政策实施效果评估模型-深度研究
- 2025版学校学生食堂餐具清洗消毒服务合同2篇
- 学校基金会的资金筹集与运用策略
- 调度室副主任安全生产职责模版(3篇)
- 虚拟现实导览设计-洞察分析
- 【储能】工商业储能业务开发要点及策略分享
- 耐克的人力资源管理
评论
0/150
提交评论