2022年江苏省盐城市大丰区第一共同体、射阳二中学数学九年级第一学期期末质量跟踪监视模拟试题含解析_第1页
2022年江苏省盐城市大丰区第一共同体、射阳二中学数学九年级第一学期期末质量跟踪监视模拟试题含解析_第2页
2022年江苏省盐城市大丰区第一共同体、射阳二中学数学九年级第一学期期末质量跟踪监视模拟试题含解析_第3页
2022年江苏省盐城市大丰区第一共同体、射阳二中学数学九年级第一学期期末质量跟踪监视模拟试题含解析_第4页
2022年江苏省盐城市大丰区第一共同体、射阳二中学数学九年级第一学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列四个图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.2.若点是直线上一点,已知,则的最小值是()A.4 B. C. D.23.近几年我国国产汽车行业蓬勃发展,下列汽车标识中,是中心对称图形的是()A. B.C. D.4.如图,四边形ABCD和四边形A′B′C′D′是以点O为位似中心的位似图形,若OA:OA′=2:3,四边形ABCD的面积等于4,则四边形A′B′C′D′的面积为()A.3 B.4 C.6 D.95.若二次函数的图象经过点(﹣1,0),则方程的解为()A., B., C., D.,6.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为PQ,则△PQD的面积为()A. B. C. D.7.如图所示是二次函数y=ax2﹣x+a2﹣1的图象,则a的值是()A.a=﹣1 B.a= C.a=1 D.a=1或a=﹣18.已知圆锥的底面半径是4,母线长是9,则圆锥侧面展开图的面积是()A. B. C. D.9.从﹣1,0,1三个数中任取两个不同的数作为点的坐标,则该点在坐标轴上的概率为()A. B. C. D.10.对于反比例函数,下列说法错误的是()A.它的图像在第一、三象限B.它的函数值随的增大而减小C.点为图像上的任意一点,过点作轴于点.的面积是.D.若点和点在这个函数图像上,则11.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210 B.x(x﹣1)=210C.2x(x﹣1)=210 D.x(x﹣1)=21012.如图,在平面直角坐标系中,梯形OACB的顶点O是坐标原点,OA边在y轴正半轴上,OB边在x轴正半轴上,且OA∥BC,双曲线y=(x>0)经过AC边的中点,若S梯形OACB=4,则双曲线y=的k值为()A.5 B.4 C.3 D.2二、填空题(每题4分,共24分)13.分解因式:x3﹣16x=______.14.为准备体育中考,甲、乙两名学生各进行了10次1分钟跳绳的测试,已知两名学生10次1分钟跳绳的平均成绩均为160个,甲的方差是80(个),乙的方差是100(个).则这10次1分钟跳绳测试成绩比较稳定的学生是________(填“甲”或“乙”).15.如图,中,,,,将绕顶点逆时针旋转到处,此时线段与的交点恰好为的中点,则的面积为______.16.如图,圆锥的表面展开图由一扇形和一个圆组成,已知圆的面积为100π,扇形的圆心角为120°,这个扇形的面积为.17.已知中,,,,,垂足为点,以点为圆心作,使得点在外,且点在内,设的半径为,那么的取值范围是______.18.已知_______三、解答题(共78分)19.(8分)如图,已知抛物线与y轴交于点,与x轴交于点,点P是线段AB上方抛物线上的一个动点.求这条抛物线的表达式及其顶点坐标;当点P移动到抛物线的什么位置时,使得,求出此时点P的坐标;当点P从A点出发沿线段AB上方的抛物线向终点B移动,在移动中,点P的横坐标以每秒1个单位长度的速度变动;与此同时点M以每秒1个单位长度的速度沿AO向终点O移动,点P,M移动到各自终点时停止当两个动点移动t秒时,求四边形PAMB的面积S关于t的函数表达式,并求t为何值时,S有最大值,最大值是多少?20.(8分)在平面直角坐标系中,己知,.点从点开始沿边向点以的速度移动;点从点开始沿边内点以的速度移动.如果、同时出发,用表示移动的时间.(1)用含的代数式表示:线段_______;______;(2)当为何值时,四边形的面积为.(3)当与相似时,求出的值.21.(8分)在Rt△ABC中,∠C=90°,a=6,b=.解这个三角形.22.(10分)在学习概率的课堂上,老师提出问题:一口袋装有除颜色外均相同的2个红球1个白球和1个篮球,小刚和小明想通过摸球来决定谁去看电影,同学甲设计了如下的方案:第一次随机从口袋中摸出一球不放回;第二次再任意摸出一球,两人胜负规则如下:摸到“一红一白”,则小刚看电影;摸到“一白一蓝”,则小明看电影.同学甲的方案公平吗?请用列表或画树状图的方法说明;你若认为这个方案不公平,那么请你改变一下规则,设计一个公平的方案.23.(10分)关于的一元二次方程有两个不等实根,.(1)求实数的取值范围;(2)若方程两实根,满足,求的值。24.(10分)小王去年开了一家微店,今年1月份开始盈利,2月份盈利2400元,4月份盈利达到3456元,且从2月份到4月份,每月盈利的平均增长率相同,试求每月盈利的平均增长率.25.(12分)解方程:(1);(2).26.解方程(1)(2)

参考答案一、选择题(每题4分,共48分)1、D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、既是轴对称图形,又是中心对称图形,故此选项正确.故选D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2、B【分析】根据题意先确定点B在哪个位置时的最小值,先作点A关于直线CD的对称点E,点B、E、O三点在一条直线上,再根据题意,连结OE与CD的交点就是点B,求出OE的长即为所求.【详解】解:在y=-x+2中,当x=0时,y=2,当y=0时,0=-x+2,解得x=2,

∴直线y=-x+2与x的交点为C(2.0),与y轴的交点为D(0,2),如图,∴OC=OD=2,∵OC⊥OD,:OC⊥OD,∴△OCD是等腰直角三角形,

∴∠OCD=45°,∴A(0,-2),∴OA=OC=2

连接AC,如图,

∵OA⊥OC,

∴△OCA是等腰直角三角形,

∴∠OCA=45°,

∴∠ACD=∠OCA+∠OCD=90°,

∴.AC⊥CD,

延长AC到点E,使CE=AC,连接BE,作EF⊥轴于点F,

则点E与点A关于直线y=-x+2对称,∠EFO=∠AOC=90,

点O、点B、点E三点共线时,OB+AB取最小值,最小值为OE的长,

在△CEF和△CAO中,

∴△CEF≌OCAO(AAS),

∴EF=OA=2,CF=OC=2

∴OF=OC+CF=4,

即OB+AB的最小值为.故选:B【点睛】本题考查的是最短路线问题,找最短路线是解题关键.找一点的对称点连接另一点和对称点与对称轴的交点就是B点.3、D【解析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.根据中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项符合题意.故选:D.【点睛】此题主要考查中心对称图形与轴对称图形的识别,解题的关键是熟知其定义.4、D【分析】利用位似的性质得到AD:A′D′=OA:OA′=2:3,再利用相似多边形的性质得到得到四边形A′B′C′D′的面积.【详解】解:∵四边形ABCD和四边形A′B′C′D′是以点O为位似中心的位似图形,∴AD:A′D′=OA:OA′=2:3,∴四边形ABCD的面积:四边形A′B′C′D′的面积=4:1,而四边形ABCD的面积等于4,∴四边形A′B′C′D′的面积为1.故选:D.【点睛】本题考查的是位似变换的性质,掌握位似图形与相似图形的关系、相似多边形的性质是解题的关键.5、C【详解】∵二次函数的图象经过点(﹣1,0),∴方程一定有一个解为:x=﹣1,∵抛物线的对称轴为:直线x=1,∴二次函数的图象与x轴的另一个交点为:(3,0),∴方程的解为:,.故选C.考点:抛物线与x轴的交点.6、D【分析】由折叠的性质可得AQ=QD,AP=PD,由勾股定理可求AQ的长,由锐角三角函数分别求出AP,HQ的长,即可求解.【详解】解:过点D作DN⊥AC于N,∵点D是BC中点,∴BD=3,∵将△ABC折叠,∴AQ=QD,AP=PD,∵AB=9,BC=6,∠B=90°,∴AC=,∵sin∠C==,∴DN=,∵cos∠C=,∴CN=,∴AN=,∵PD2=PN2+DN2,∴AP2=(﹣AP)2+,∴AP=,∵QD2=DB2+QB2,∴AQ2=(9﹣AQ)2+9,∴AQ=5,∵sin∠A==,∴HQ==∵∴△PQD的面积=△APQ的面积=××=,故选:D.【点睛】本题考查了翻折变换,勾股定理,三角形面积公式,锐角三角函数,求出HQ的长是本题的关键.7、C【解析】由图象得,此二次函数过原点(0,0),

把点(0,0)代入函数解析式得a2-1=0,解得a=±1;

又因为此二次函数的开口向上,所以a>0;

所以a=1.

故选C.8、D【分析】先根据圆的周长公式计算出圆锥的底面周长,然后根据扇形的面积公式,即可求出圆锥侧面展开图的面积.【详解】解:圆锥的底面周长为:2×4=,则圆锥侧面展开图的面积是.故选:D.【点睛】此题考查的是求圆锥的侧面面积,掌握圆的周长公式和扇形的面积公式是解决此题的关键.9、C【分析】列表得出所有等可能的情况数,找出刚好在坐标轴上的点个数,即可求出所求的概率.【详解】解:根据题意列表如下:﹣110﹣1﹣﹣﹣(1,﹣1)(0,﹣1)1(﹣1,1)﹣﹣﹣(0,1)0(﹣1,0)(1,0)﹣﹣﹣所有等可能的情况有6种,其中该点刚好在坐标轴上的情况有4种,所以该点在坐标轴上的概率=;故选:C.【点睛】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了点的坐标特征.10、B【分析】对反比例函数化简得,所以k=>0,当k>0时,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小,根据反比例函数的性质对四个选项进行逐一分析即可.【详解】解:A、∵k=>0,∴它的图象分布在第一、三象限,故本选项正确;B、∵它的图象分布在第一、三象限,∴在每一象限内y随x的增大而减小,故本选项错误;C、∵k=,根据反比例函数中k的几何意义可得的面积为=,故本选项正确;D、∵它的图象分布在第一、三象限,在每一象限内y随x的增大而减小,∵x1=﹣1<0,x2=﹣<0,且x1>x2,∴,故本选项正确.故选:B.【点睛】题考查的是反比例函数的性质,熟知反比例函数y=(k≠0)中,当k>0时函数图象的两个分支分别位于一三象限是解答此题的关键.11、B【详解】设全组共有x名同学,那么每名同学送出的图书是(x−1)本;则总共送出的图书为x(x−1);又知实际互赠了210本图书,则x(x−1)=210.故选:B.12、D【分析】过的中点作轴交轴于,交于,作轴于,如图,先根据“”证明,则,得到,再利用得到,然后根据反比例函数系数的几何意义得,再去绝对值即可得到满足条件的的值.【详解】过的中点作轴交轴于,交于,作轴于,如图,在和中,,(),,,,,,而,.故选:.【点睛】本题考查了反比例函数系数的几何意义:从反比例函数图象上任意一点向轴于轴作垂线,垂线与坐标轴所围成的矩形面积为.二、填空题(每题4分,共24分)13、x(x+4)(x–4).【解析】先提取x,再把x2和16=42分别写成完全平方的形式,再利用平方差公式进行因式分解即可.解:原式=x(x2﹣16)=x(x+4)(x﹣4),故答案为x(x+4)(x﹣4).14、甲【分析】根据方差的稳定性即可求解.【详解】∵两名学生10次1分钟跳绳的平均成绩均为160个,甲的方差是80(个),乙的方差是100(个)故成绩比较稳定的学生是甲故答案为甲.【点睛】此题主要考查数据的稳定性,解题的关键是熟知方差的性质.15、【分析】A1B1与OA相交于点E,作B1H⊥OB于点H,如图,利用勾股定理得到AB=1,再根据直角三角形斜边上的中线性质得OD=AD=DB,则∠1=∠A,接着根据旋转的性质得∠3=∠2,A1B1=AB=1,OB1=OB=8,OA1=OA=2,易得∠2+∠1=90°,所以∠OEB1=90°,于是可利用面积法计算出OE,再由四边形OEB1H为矩形得到B1H=OE,根据三角形的面积公式即可得出结论.【详解】A1B1与OA相交于点E,作B1H⊥OB于点H,如图,∵∠AOB=90°,AO=2,BO=8,∴AB1.∵D为AB的中点,∴OD=AD=DB,∴∠1=∠A.∵△AOB绕顶点O逆时针旋转得到△A1OB1,∴∠3=∠2,A1B1=AB=1,OB1=OB=8,OA1=OA=2.∵∠3+∠A=90°,∴∠2+∠1=90°,∴∠OEB1=90°.∵OE•A1B1OB1•OA1,∴OE.∵∠B1EO=∠EOB=∠OHB1=90°,∴四边形OEB1H为矩形,∴B1H=OE,∴的面积===.故答案为:.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了全等三角形的判定与性质和矩形的判定与性质.16、300π【解析】试题分析:首先根据底面圆的面积求得底面的半径,然后结合弧长公式求得扇形的半径,然后利用扇形的面积公式求得侧面积即可.∵底面圆的面积为100π,∴底面圆的半径为10,∴扇形的弧长等于圆的周长为20π,设扇形的母线长为r,则=20π,解得:母线长为30,∴扇形的面积为πrl=π×10×30=300π考点:(1)、圆锥的计算;(2)、扇形面积的计算17、【分析】先根据勾股定理求出AB的长,进而得出CD的长,再求出AD,BD的长,由点与圆的位置关系即可得出结论.【详解】解:∵Rt△ABC中,∠ACB=90,AC=3,BC=,

∴AB==1.

∵CD⊥AB,∴CD=.

∵AD•BD=CD2,

设AD=x,BD=1-x,得x(1-x)=,又AD>BD,解得x1=(舍去),x2=.∴AD=,BD=.

∵点A在圆外,点B在圆内,∴BD<r<AD,

∴r的范围是,

故答案为:.【点睛】本题考查的是点与圆的位置关系,熟知点与圆的三种位置关系是解答此题的关键.18、2【分析】设,分别用k表示x、y、z,然后代入计算,即可得到答案.【详解】解:根据题意,设,∴,,,∴;故答案为:2.【点睛】本题考查了比例的性质,解题的关键是掌握比例的性质,正确用k来表示x、y、z.三、解答题(共78分)19、(1)抛物线的表达式为,抛物线的顶点坐标为;(2)P点坐标为;(3)当时,S有最大值,最大值为1.

【解析】分析:(1)由A、B坐标,利用待定系数法可求得抛物线的表达式,化为顶点式可求得顶点坐标;(2)过P作PC⊥y轴于点C,由条件可求得∠PAC=60°,可设AC=m,在Rt△PAC中,可表示出PC的长,从而可用m表示出P点坐标,代入抛物线解析式可求得m的值,即可求得P点坐标;(3)用t可表示出P、M的坐标,过P作PE⊥x轴于点E,交AB于点F,则可表示出F的坐标,从而可用t表示出PF的长,从而可表示出△PAB的面积,利用S四边形PAMB=S△PAB+S△AMB,可得到S关于t的二次函数,利用二次函数的性质可求得其最大值.详解:根据题意,把,代入抛物线解析式可得,解得,抛物线的表达式为,,抛物线的顶点坐标为;如图1,过P作轴于点C,,,当时,,,即,设,则,,把P点坐标代入抛物线表达式可得,解得或,经检验,与点A重合,不合题意,舍去,所求的P点坐标为;当两个动点移动t秒时,则,,如图2,作轴于点E,交AB于点F,则,,,点A到PE的距离竽OE,点B到PE的距离等于BE,,且,,当时,S有最大值,最大值为1.

点睛:本题为二次函数的综合应用,涉及待定系数法、直角三角形的性质、二次函数的性质、三角形的面积及方程思想等知识.在(1)中注意待定系数法的应用,在(2)中构造Rt△PAC是解题的关键,在(3)中用t表示出P、M的坐标,表示出PF的长是解题的关键.本题考查知识点较多,综合性较强,难度适中.20、(1)2t,(5﹣t);(2)t=2或3;(3)t或1.【分析】(1)根据路程=速度×时间可求解;(2)根据S四边形PABQ=S△ABO﹣S△PQO列出方程求解;(3)分或两种情形列出方程即可解决问题.【详解】(1)OP=2tcm,OQ=(5﹣t)cm.故答案为:2t,(5﹣t).(2)∵S四边形PABQ=S△ABO﹣S△PQO,∴1910×52t×(5﹣t),解得:t=2或3,∴当t=2或3时,四边形PABQ的面积为19cm2.(3)∵△POQ与△AOB相似,∠POQ=∠AOB=90°,∴或.①当,则,∴t,②当时,则,∴t=1.综上所述:当t或1时,△POQ与△AOB相似.【点睛】本题是相似综合题,考查相似三角形的判定和性质、坐标与图形的性质、三角形的面积等知识,解答本题的关键是灵活运用所学知识解决问题,属于中考常考题型.21、c=12,∠A=30°,∠B=60°.【分析】先用勾股定理求出c,再根据边的比得到角的度数.【详解】在Rt△ABC中,∠C=90°,a=6,b=,∴,∵,,∴∠A=30°,∠B=60°.【点睛】此题考查解直角三角形,即求出三角形未知的边和角,用三角函数求角度时能熟记各角的三角函数值是解题的关键.22、(1)不公平,理由见解析;(2)拿出一个红球或放进一个蓝球,其他

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论