(新高考)高考数学一轮复习分层突破练习8.2《空间点、直线、平面之间的位置关系》(含详解)_第1页
(新高考)高考数学一轮复习分层突破练习8.2《空间点、直线、平面之间的位置关系》(含详解)_第2页
(新高考)高考数学一轮复习分层突破练习8.2《空间点、直线、平面之间的位置关系》(含详解)_第3页
(新高考)高考数学一轮复习分层突破练习8.2《空间点、直线、平面之间的位置关系》(含详解)_第4页
(新高考)高考数学一轮复习分层突破练习8.2《空间点、直线、平面之间的位置关系》(含详解)_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

[基础题组练]1.已知直线a和平面α,β,α∩β=l,a⊄α,a⊄β,且a在α,β内的射影分别为直线b和c,则直线b和c的位置关系是()A.相交或平行 B.相交或异面C.平行或异面 D.相交、平行或异面解析:选D.依题意,直线b和c的位置关系可能是相交、平行或异面.故选D.2.(多选)下列命题正确的是()A.梯形一定是平面图形B.若两条直线和第三条直线所成的角相等,则这两条直线平行C.两两相交的三条直线最多可以确定三个平面D.若两个平面有三个公共点,则这两个平面重合解析:选AC.对于A,由于两条平行直线确定一个平面,所以梯形可以确定一个平面,故A正确;对于B,两条直线和第三条直线所成的角相等,则这两条直线平行或异面或相交,故B错误;对于C,两两相交的三条直线最多可以确定三个平面,故C正确;对于D,若两个平面有三个公共点,则这两个平面相交或重合,故D错误.3.已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件解析:选A.若直线a,b相交,设交点为P,则P∈a,P∈b.又a⊂α,b⊂β,所以P∈α,P∈β,故α,β相交.反之,若α,β相交,则a,b可能相交,也可能异面或平行.故“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件.4.(多选)如图,在长方体ABCD­A1B1C1D1中,O是DB的中点,直线A1C交平面C1BD于点M,则下列结论正确的是()A.C1,M,O三点共线B.C1,M,O,C四点共面C.C1,O,A1,M四点共面D.D1,D,O,M四点共面解析:选ABC.连接A1C1,AC,则AC∩BD=O,又A1C∩平面C1BD=M,所以三点C1,M,O在平面C1BD与平面ACC1A1的交线上,所以C1,M,O三点共线,所以选项A,B,C均正确,选项D错误.5.(2020·内蒙古集宁一中四模)如图,在四面体ABCD中,E,F分别是AC,BD的中点,若CD=2AB=4,EF⊥BA,则EF与CD所成的角为()A.30° B.45°C.60° D.90°解析:选A.取CB的中点G,连接EG,FG.则EG∥AB,FG∥CD.所以EF与CD所成的角为∠EFG(或其补角),因为EF⊥AB,所以EF⊥EG.EG=eq\f(1,2)AB=1,FG=eq\f(1,2)CD=2,所以在Rt△EFG中,sin∠EFG=eq\f(1,2),所以EF与CD所成的角为30°.故选A.6.已知棱长为a的正方体ABCD­A′B′C′D′中,M,N分别为CD,AD的中点,则MN与A′C′的位置关系是_______________________________.解析:如图,由题意可知MN∥AC.又因为AC∥A′C′,所以MN∥A′C′.答案:平行7.给出下列四个命题:①平面外的一条直线与这个平面最多有一个公共点;②若平面α内的一条直线a与平面β内的一条直线b相交,则α与β相交;③若一条直线和两条平行线都相交,则这三条直线共面;④若三条直线两两相交,则这三条直线共面.其中真命题的序号是________.解析:①正确,因为直线在平面外即直线与平面相交或直线平行于平面,所以最多有一个公共点.②正确,a,b有交点,则两平面有公共点,则两平面相交.③正确,两平行直线可确定一个平面,又直线与两平行直线的两交点在这两平行直线上,所以过这两交点的直线也在平面内,即三线共面.④错误,这三条直线可以交于同一点,但不在同一平面内.答案:①②③8.如图,四边形ABCD和ADPQ均为正方形,它们所在的平面互相垂直,则异面直线AP与BD所成的角为________.解析:如图,将原图补成正方体ABCD­QGHP,连接AG,GP,则GP∥BD,所以∠APG为异面直线AP与BD所成的角,在△AGP中,AG=GP=AP,所以∠APG=eq\f(π,3).答案:eq\f(π,3)9.如图,在正方体ABCD­A1B1C1D1中,O为正方形ABCD的中心,H为直线B1D与平面ACD1的交点.求证:D1,H,O三点共线.证明:如图,连接BD,B1D1,则BD∩AC=O,因为BB1eq\o(\s\do3(═),\s\up3(∥))DD1,所以四边形BB1D1D为平行四边形,又H∈B1D,B1D⊂平面BB1D1D,则H∈平面BB1D1D,因为平面ACD1∩平面BB1D1D=OD1,所以H∈OD1.即D1,H,O三点共线.10.如图,在三棱锥P­ABC中,PA⊥底面ABC,D是PC的中点.已知∠BAC=eq\f(π,2),AB=2,AC=2eq\r(3),PA=2.求:(1)三棱锥P­ABC的体积;(2)异面直线BC与AD所成角的余弦值.解:(1)S△ABC=eq\f(1,2)×2×2eq\r(3)=2eq\r(3),三棱锥P­ABC的体积为V=eq\f(1,3)S△ABC·PA=eq\f(1,3)×2eq\r(3)×2=eq\f(4\r(3),3).(2)如图,取PB的中点E,连接DE,AE,则ED∥BC,所以∠ADE(或其补角)是异面直线BC与AD所成的角.在△ADE中,DE=2,AE=eq\r(2),AD=2,cos∠ADE=eq\f(22+22-2,2×2×2)=eq\f(3,4).故异面直线BC与AD所成角的余弦值为eq\f(3,4).[综合题组练]1.(创新型)如图,已知线段AB垂直于定圆所在的平面,B,C是圆上的两点,H是点B在AC上的射影,当点C运动时,点H运动的轨迹()A.是圆 B.是椭圆C.是抛物线 D.不是平面图形解析:选A.如图,过点B作圆的直径BD,连接CD,AD,则BC⊥CD,再过点B作BE⊥AD于点E,连接HE,因为AB⊥平面BCD,所以AB⊥CD.又BC⊥CD,且AB∩BC=B,所以CD⊥平面ABC,所以CD⊥BH.又BH⊥AC,且AC∩CD=C,所以BH⊥平面ACD,所以BH⊥AD,BH⊥HE.又注意到过点B与直线AD垂直的直线都在同一个平面内,于是结合点B,E位置,可知,当点C运动时,点H运动的轨迹是以BE为直径的圆.故选A.2.(多选)如图,在边长为1的正方形ABCD中,点E,F分别为边BC,AD的中点,将△ABF沿BF所在的直线进行翻折,将△CDE沿DE所在的直线进行翻折,在翻折的过程中,下列说法正确的是()A.无论旋转到什么位置,A,C两点都不可能重合B.存在某个位置,使得直线AF与直线CE所成的角为60°C.存在某个位置,使得直线AF与直线CE所成的角为90°D.存在某个位置,使得直线AB与直线CD所成的角为90°解析:选ABC.在A中,A与C恒不重合,故A正确;在B中,存在某个位置,使得直线AF与直线CE所成的角为60°,故B正确;在C中,存在某个位置,使得直线AF与直线CE所成的角为90°,故C正确;在D中,直线AB与直线CD不可能垂直,故D不成立.故选ABC.3.一正方体的平面展开图如图所示,在这个正方体中,有下列四个命题:①AF⊥GC;②BD与GC成异面直线且夹角为60°;③BD∥MN;④BG与平面ABCD所成的角为45°.其中正确的是________(填序号).解析:将平面展开图还原成正方体(如图所示).对于①,由图形知AF与GC异面垂直,故①正确;对于②,BD与GC显然成异面直线.如图,连接EB,ED,则BE∥GC,所以∠EBD即为异面直线BD与GC所成的角(或其补角).在等边△BDE中,∠EBD=60°,所以异面直线BD与GC所成的角为60°,故②正确;对于③,BD与MN为异面垂直,故③错误;对于④,由题意得,GD⊥平面ABCD,所以∠GBD是BG与平面ABCD所成的角.但在Rt△BDG中,∠GBD不等于45°,故④错误.综上可得①②正确.答案:①②4.(2020·河南安阳调研四)在正方体ABCD­A1B1C1D1中,点E∈平面AA1B1B,点F是线段AA1的中点,若D1E⊥CF,则当△EBC的面积取得最小值时,eq\f(S△EBC,S四边形ABCD)=________.解析:如图所示,连接B1D1,取AB的中点G,连接D1G,B1G.由题意得CF⊥平面B1D1G,所以当点E在直线B1G上时,D1E⊥CF,设BC=a,则S△EBC=eq\f(1,2)EB·BC=eq\f(1,2)EB·a,当△EBC的面积取最小值时,线段EB的长度为点B到直线B1G的距离,所以线段EB长度的最小值为eq\f(a,\r(5)),所以eq\f(S△EBC,S四边形ABCD)=eq\f(\f(1,2)×\f(a,\r(5))×a,a2)=eq\f(\r(5),10).答案:eq\f(\r(5),10)5.如图所示,A是△BCD所在平面外的一点,E,F分别是BC,AD的中点.(1)求证:直线EF与BD是异面直线;(2)若AC⊥BD,AC=BD,求EF与BD所成的角.解:(1)证明:假设EF与BD不是异面直线,则EF与BD共面,从而DF与BE共面,即AD与BC共面,所以A,B,C,D在同一平面内,这与A是△BCD所在平面外的一点相矛盾.故直线EF与BD是异面直线.(2)取CD的中点G,连接EG,FG,则AC∥FG,EG∥BD,所以相交直线EF与EG所成的角,即为异面直线EF与BD所成的角.又因为AC⊥BD,则FG⊥EG.在Rt△EGF中,由EG=FG=eq\f(1,2)AC,求得∠FEG=45°,即异面直线EF与BD所成的角为45°.6.(综合型)如图,E,F,G,H分别是空间四边形ABCD各边上的点,且AE∶EB=AH∶HD=m,CF∶FB=CG∶GD=n.(1)证明:E,F,G,H四点共面;(2)m,n满足什么条件时,四边形EFGH是平行四边形?(3)在(2)的条件下,若AC⊥BD,试证明:EG=FH.解:(1)证明:因为AE∶EB=AH∶HD,所以EH∥BD.又CF∶FB=CG∶GD,所以FG∥BD.所以EH∥FG.所以E,F,G,H四点共面.(2)当EH∥FG,且EH=FG时,四边形EFGH为平行四边形.因

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论