2022-2023学年江苏省南京市名校九年级数学第一学期期末达标检测模拟试题含解析_第1页
2022-2023学年江苏省南京市名校九年级数学第一学期期末达标检测模拟试题含解析_第2页
2022-2023学年江苏省南京市名校九年级数学第一学期期末达标检测模拟试题含解析_第3页
2022-2023学年江苏省南京市名校九年级数学第一学期期末达标检测模拟试题含解析_第4页
2022-2023学年江苏省南京市名校九年级数学第一学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,两个同心圆(圆心相同半径不同的圆)的半径分别为6cm和3cm,大圆的弦AB与小圆相切,则劣弧AB的长为()A.2πcm B.4πcm C.6πcm D.8πcm2.在Rt△ABC中,∠C=90°,AB=10,sin∠B=,则BC=()A.15 B.6 C.9 D.83.如图,以原点O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A.(sinα,sinα) B.(cosα,cosα) C.(cosα,sinα) D.(sinα,cosα)4.如图,抛物线与轴交于点,与轴的负半轴交于点,点是对称轴上的一个动点.连接,当最大时,点的坐标是()A. B. C. D.5.方程的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根 C.无实数根 D.只有一个实数根6.已知二次函数的图象如图所示,则下列结论:①;②;③当时,:④方程有两个大于-1的实数根.其中正确的是()A.①②③ B.①②④ C.②③④ D.①③④7.如图,、、、是上的四点,,,则的度数是()A. B. C. D.8.为测量如图所示的斜坡垫的倾斜度,小明画出了斜坡垫的侧面示意图,测得的数据有:,则该斜坡垫的倾斜角的正弦值是()A. B. C. D.9.如图,AB是O的直径,AB=4,C为的三等分点(更靠近A点),点P是O上一个动点,取弦AP的中点D,则线段CD的最大值为()A.2 B. C. D.10.如图,边长为的正方形的对角线与交于点,将正方形沿直线折叠,点落在对角线上的点处,折痕交于点,则()A. B. C. D.11.某商品先涨价后降价,销售单价由原来元最后调整到元,涨价和降价的百分率都为.根据题意可列方程为()A. B.C. D.12.把抛物线向右平移l个单位,然后向下平移3个单位,则平移后抛物线的解析式为()A. B.C. D.二、填空题(每题4分,共24分)13.如图,扇形纸扇完全打开后,外侧两竹条AB,AC夹角为150°,AB的长为18cm,BD的长为9cm,则纸面部分BDEC的面积为_____cm1.14.如图,在四边形ABCD中,∠DAB=120°,∠DCB=60°,CB=CD,AC=8,则四边形ABCD的面积为__.15.如图,一根直立于水平地面上的木杆AB在灯光下形成影子,当木杆绕A按逆时针方向旋转直至到达地面时,影子的长度发生变化.设AB垂直于地面时的影长为AC﹙假定AC>AB﹚,影长的最大值为m,最小值为n,那么下列结论中:①m>AC;②m=AC;③n=AB;④影子的长度先增大后减小.正确的结论序号是_____.﹙直角填写正确的结论的序号﹚.16.当_____时,在实数范围内有意义.17.如图,两弦AB、CD相交于点E,且AB⊥CD,若∠B=60°,则∠A等于_____度.18.如图,在圆中,是弦,点是劣弧的中点,联结,平分,联结、,那么__________度.三、解答题(共78分)19.(8分)武汉市某中学进行九年级理化实验考查,有A和B两个考查实验,规定每位学生只参加一个实验的考查,并由学生自己抽签决定具体的考查实验,小孟、小柯、小刘都要参加本次考查.(1)用列表或画树状图的方法求小孟、小柯都参加实验A考查的概率;(2)他们三人中至少有两人参加实验B的概率(直接写出结果).20.(8分)⊙O直径AB=12cm,AM和BN是⊙O的切线,DC切⊙O于点E且交AM于点D,交BN于点C,设AD=x,BC=y.(1)求y与x之间的关系式;(2)x,y是关于t的一元二次方程2t2﹣30t+m=0的两个根,求x,y的值;(3)在(2)的条件下,求△COD的面积.21.(8分)(1)某学校“学习落实”数学兴趣小组遇到这样一个题目:如图1,在中,点在线段上,,,,,求的长.经过数学小组成员讨论发现,过点作,交的延长线于点,通过构造就可以解决问题(如图2)请回答:,.(2)请参考以上解决思路,解决问题:如图在四边形中对角线与相交于点,,,,.求的长.22.(10分)如图①,是一张直角三角形纸片,∠B=90°,AB=12,BC=8,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大.(1)请通过计算说明小明的猜想是否正确;(2)如图②,在△ABC中,BC=10,BC边上的高AD=10,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,求矩形PQMN面积的最大值;(3)如图③,在五边形ABCDE中,AB=16,BC=20,AE=10,CD=8,∠A=∠B=∠C=90°.小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),求该矩形的面积.23.(10分)期中考试中,A,B,C,D,E五位同学的数学、英语成绩有如表信息:ABCDE平均分中位数数学7172696870英语8882948576(1)完成表格中的数据;(2)为了比较不同学科考试成绩的好与差,采用标准分是一个合理的选择,标准分的计算公式是:标准分=(个人成绩﹣平均成绩)÷成绩方差.从标准分看,标准分高的考试成绩更好,请问A同学在本次考试中,数学与英语哪个学科考得更好?24.(10分)如图,抛物线y=x2+bx+c与直线y=x+3交于A,B两点,交x轴于C、D两点,连接AC、BC,已知A(0,3),C(﹣3,0).(1)求抛物线的解析式;(2)在抛物线对称轴l上找一点M,使|MB﹣MD|的值最大,并求出这个最大值;(3)点P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与△ABC相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.25.(12分)如图所示,分别切的三边、、于点、、,若,,.(1)求的长;(2)求的半径长.26.如图示,是的直径,点是半圆上的一动点(不与,重合),弦平分,过点作交射线于点.(1)求证:与相切:(2)若,,求长;(3)若,长记为,长记为,求与之间的函数关系式,并求出的最大值.

参考答案一、选择题(每题4分,共48分)1、B【解析】首先连接OC,AO,由切线的性质,可得OC⊥AB,根据已知条件可得:OA=2OC,进而求出∠AOC的度数,则圆心角∠AOB可求,根据弧长公式即可求出劣弧AB的长.【详解】解:如图,连接OC,AO,

∵大圆的一条弦AB与小圆相切,

∴OC⊥AB,

∵OA=6,OC=3,

∴OA=2OC,

∴∠A=30°,

∴∠AOC=60°,

∴∠AOB=120°,

∴劣弧AB的长==4π,

故选B.【点睛】本题考查切线的性质,弧长公式,熟练掌握切线的性质是解题关键.2、D【分析】首先根据正弦函数的定义求得AC的长,然后利用勾股定理求得BC的长.【详解】解:∴直角△ABC中,故选:D.【点睛】本题考查的是锐角三角形的正弦函数,理解熟记正弦三角函数定义是解决本题的关键.3、C【解析】过P作PQ⊥OB,交OB于点Q,在直角三角形OPQ中,利用锐角三角函数定义表示出OQ与PQ,即可确定出P的坐标.解:过P作PQ⊥OB,交OB于点Q,在Rt△OPQ中,OP=1,∠POQ=α,∴sinα=,cosα=,即PQ=sinα,OQ=cosα,则P的坐标为(cosα,sinα),故选C.4、D【分析】先根据题意求出点A、点B的坐标,A(0,-3),B(-1,0),抛物线的对称轴为x=1,根据三角形三边的关系得≤AB,当ABM三点共线时取等号,即M点是x=-1与直线AB的交点时,最大.求出点M的坐标即可.【详解】解:根据三角形三边的关系得:≤AB,当ABM三点共线时取等号,当三点共线时,最大,则直线与对称轴的交点即为点.由可知,,对称轴设直线为.故直线解析式为当时,.故选:.【点睛】本题考查了三角形三边关系的应用,及二次函数的性质应用.找到三点共线时最大是关键,5、C【分析】把a=1,b=-1,c=3代入△=b2-4ac进行计算,然后根据计算结果判断方程根的情况.【详解】∵a=1,b=-1,c=3,∴△=b2-4ac=(-1)2-4×1×3=-11<0,所以方程没有实数根.故选C.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.6、B【分析】①由二次函数的图象开口方向知道a<0,与y轴交点知道c>0,由此即可确定ac的符号;②由于二次函数图象与x轴有两个交点即有两个不相等的实数根,由此即可判定的符号;③根据图象知道当x<0时,y不一定小于0,由此即可判定此结论是否正确;④根据图象与x轴交点的情况即可判定是否正确.【详解】解:∵图象开口向下,∴a<0,∵图象与y轴交于正半轴,则c>0,∴ac<0,故选项①正确;∵二次函数图象与x轴有两个交点即有两个不相等的实数根,即,故选项②正确;③当x<0时,有部分图象在y的上半轴即函数值y不一定小于0,故选项③错误;④利用图象与x轴交点都大于-1,故方程有两个大于-1的实数根,故选项④正确;故选:B.【点睛】本题主要考查了图象与二次函数系数之间的关系,二次函数与方程之间的转换,会利用特殊值代入法求得特殊的式子,如:当时,,然后根据图象判断其值.7、A【分析】根据垂径定理得,结合和圆周角定理,即可得到答案.【详解】∵,∴,∵,∴.故选:A.【点睛】本题主要考查垂径定理和圆周角定理,掌握垂径定理和圆周角定理是解题的关键.8、A【分析】利用正弦值的概念,的正弦值=进行计算求解.【详解】解:∵∴在Rt△ABC中,故选:A.【点睛】本题考查锐角三角函数的概念,熟练掌握正弦值的概念,熟记的正弦值=是本题的解题关键.9、D【解析】取OA的中点Q,连接DQ,OD,CQ,根据条件可求得CQ长,再由垂径定理得出OD⊥AP,由直角三角形斜边中线等于斜边一半求得QD长,根据当C,Q,D三点共线时,CD长最大求解.【详解】解:如图,取AO的中点Q,连接CQ,QD,OD,∵C为的三等分点,∴的度数为60°,∴∠AOC=60°,∵OA=OC,∴△AOC为等边三角形,∵Q为OA的中点,∴CQ⊥OA,∠OCQ=30°,∴OQ=,由勾股定理可得,CQ=,∵D为AP的中点,∴OD⊥AP,∵Q为OA的中点,∴DQ=,∴当D点CQ的延长线上时,即点C,Q,D三点共线时,CD长最大,最大值为.故选D【点睛】本题考查利用弧与圆心角的关系及垂径定理求相关线段的长度,并且考查线段最大值问题,利用圆的综合性质是解答此题的关键.10、D【分析】过点M作MP⊥CD垂足为P,过点O作OQ⊥CD垂足为Q,根据正方形的性质得到AB=AD=BC=CD=,∠DCB=∠COD=∠BOC=90°,根据折叠的性质得到∠EDF=∠CDF,设OM=PM=x,根据相似三角形的性质即可得到结论.【详解】过点M作MP⊥CD垂足为P,过点O作OQ⊥CD垂足为Q,∵正方形的边长为,∴OD=1,OC=1,OQ=DQ=,由折叠可知,∠EDF=∠CDF.又∵AC⊥BD,∴OM=PM,设OM=PM=x∵OQ⊥CD,MP⊥CD∴∠OQC=∠MPC=900,∠PCM=∠QCO,∴△CMP∽△COQ∴,即,解得x=-1∴OM=PM=-1.故选D【点睛】此题考查正方形的性质,折叠的性质,相似三角形的性质与判定,角平分线的性质,解题关键在于作辅助线11、A【分析】涨价和降价的百分率都为,根据增长率的定义即可列出方程.【详解】涨价和降价的百分率都为.根据题意可列方程故选A.【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意找到数量关系列出方程.12、D【分析】根据题意原抛物线的顶点坐标为(0,0),根据平移规律得平移后抛物线顶点坐标为(1,-3),根据抛物线的顶点式求解析式.【详解】解:抛物线形平移不改变解析式的二次项系数,平移后顶点坐标为(1,-3),∴平移后抛物线解析式为.故选:D.【点睛】本题考查抛物线的平移与抛物线解析式的联系,关键是把抛物线的平移转化为顶点的平移,利用顶点式求解析式.二、填空题(每题4分,共24分)13、【分析】贴纸部分的面积可看作是扇形BAC的面积减去扇形DAE的面积.【详解】S=S扇形BAC﹣S扇形DAE==(cm1).故答案是:【点睛】本题考查扇形面积,解题的关键是掌握扇形面积公式.14、16【分析】延长AB至点E,使BE=DA,连接CE,作CF⊥AB于F,证明△CDA≌△CBE,根据全等三角形的性质得到CA=CE,∠BCE=∠DCA,得到△CAE为等边三角形,根据等边三角形的性质计算,得到答案.【详解】延长AB至点E,使BE=DA,连接CE,作CF⊥AB于F,∵∠DAB+∠DCB=120°+60°=180°,∴∠CDA+∠CBA=180°,又∠CBE+∠CBA=180°,∴∠CDA=∠CBE,在△CDA和△CBE中,,∴△CDA≌△CBE(SAS)∴CA=CE,∠BCE=∠DCA,∵∠DCB=60°,∴∠ACE=60°,∴△CAE为等边三角形,∴AE=AC=8,CF=AC=4,则四边形ABCD的面积=△CAB的面积=×8×4=16,故答案为:16.【点睛】考核知识点:等边三角形判定和性质,三角函数.作辅助线,构造直角三角形是关键.15、①③④【分析】由当AB与光线BC垂直时,m最大即可判断①②,由最小值为AB与底面重合可判断③,点光源固定,当线段AB旋转时,影长将随物高挡住光线的不同位置发生变化过程可判断④.【详解】当木杆绕点A按逆时针方向旋转时,如图所示当AB与光线BC垂直时,m最大,则m>AC,①成立;

①成立,那么②不成立;

最小值为AB与底面重合,故n=AB,故③成立;

由上可知,影子的长度先增大后减小,④成立.

故答案为:①③④.16、x≥1且x≠1【分析】二次根式及分式有意义的条件:被开方数为非负数,分母不为1,据此解答即可.【详解】∵有意义,∴x≥1且﹣1≠1,∴x≥1且x≠1时,在实数范围内有意义,故答案为:x≥1且x≠1【点睛】本题考查二次根式和分式有意义的条件,要使二次根式有意义,被开方数为非负数;要使分式有意义分母不为1.17、30【解析】首先根据圆周角定理,得∠A=∠BDC,再根据三角形的内角和定理即可求得∠BDC的度数,从而得出结论.【详解】∵AB⊥CD,∴∠DEB=90°,∵∠B=60°∴∠BDC=90°-∠B=90°-60°=30°,∴∠A=∠BDC=30°,故答案为30°.【点睛】综合运用了圆周角定理以及三角形的内角和定理.18、120【分析】连接AC,证明△AOC是等边三角形,得出的度数.【详解】连接AC∵点C是的中点∴∵,∴AB平分OC∴AB是线段OC的垂直平分线∴∵∴∴△AOC是等边三角形∴∴∴故答案为.【点睛】本题考查了等边三角形的判定定理,从而得出目标角的度数.三、解答题(共78分)19、(1);(2)【分析】(1)先画出树状图,得出所有等情况数和小孟、小柯都参加实验A考查的情况数,再根据概率公式即可得出答案;(2)根据每人都有2种选法,得出共有8种等情况数,他们三人中至少有两人参加实验B的有4种,再根据概率公式即可得出答案.【详解】解:(1)画树状图如图所示:∵两人的参加实验考查共有四种等可能结果,而两人均参加实验A考查有1种,∴小孟、小柯都参加实验A考查的概率为.(2)共有8种等情况数,他们三人中至少有两人参加实验B的有4种,所以他们三人中至少有两人参加实验B的概率是.故答案为:.【点睛】本题考查了数据统计的知识,中考必考题型,重点需要掌握树状图的画法.20、(1)y=;(2)或;(3)1.【分析】(1)如图,作DF⊥BN交BC于F,根据切线长定理得,则DC=DE+CE=x+y,在中根据勾股定理,就可以求出y与x之间的关系式.(2)由(1)求得,由根与系数的关系求得的值,通过解一元二次方程即可求得x,y的值.(3)如图,连接OD,OE,OC,由AM和BN是⊙O的切线,DC切⊙O于点E,得到,,,推出S△AOD=S△ODE,S△OBC=S△COE,即可得出答案.【详解】(1)如图,作DF⊥BN交BC于F;∵AM、BN与⊙O切于点定A、B,∴AB⊥AM,AB⊥BN.又∵DF⊥BN,∴∠BAD=∠ABC=∠BFD=90°,∴四边形ABFD是矩形,∴BF=AD=x,DF=AB=12,∵BC=y,∴FC=BC﹣BF=y﹣x;∵DE切⊙O于E,∴DE=DA=xCE=CB=y,则DC=DE+CE=x+y,在Rt△DFC中,由勾股定理得:(x+y)2=(y﹣x)2+122,整理为:y=,∴y与x的函数关系式是y=.(2)由(1)知xy=36,x,y是方程2x2﹣30x+a=0的两个根,∴根据韦达定理知,xy=,即a=72;∴原方程为x2﹣15x+36=0,解得或.(3)如图,连接OD,OE,OC,∵AD,BC,CD是⊙O的切线,∴OE⊥CD,AD=DE,BC=CE,∴S△AOD=S△ODE,S△OBC=S△COE,∴S△COD=××(3+12)×12=1.【点睛】本题考查了圆切线的综合问题,掌握切线长定理、勾股定理、一元二次方程的解法是解题的关键.21、(1),;(2)【分析】(1)

根据平行线的性质可得出∠ADB=∠OAC=75°,结合∠BOD=∠COA可得出△BOD∽△COA,利用相似三角形的性质可求出OD的值,进而可得出AD的值,由三角形内角和定理可得出∠ABD=75°=∠

ADB,由等角对等边可得出;

(2)

过点B作BE∥

AD交AC于点E,同(1)

可得出AE,在Rt△AEB中,利用勾股定理可求出BE的长度,再在Rt△CAD中,利用勾股定理可求出DC的长,此题得解.【详解】解:(1),.又,.,故答案为:;.(2)过点作交于点,如图所示.,.,在中,,即,解得:在中,.【点睛】本题考查了平行线的性质、相似三角形性质及勾股定理,构造相似三角形是解题的关键,利用勾股定理进行计算是解决本题的难点.22、(1)正确,理由见解析;(2)当a=5时,S矩形MNPQ最大为25;(3)矩形的最大面积为1.【分析】(1)设BF=x,则AF=12﹣x,证明△AFE∽△ABC,进而表示出EF,利用面积公式得出S矩形BDEF=﹣(x﹣6)2+24,即可得出结论;(2)设DE=a,AE=10﹣a,则证明△APN∽△ABC,进而得出PN=10﹣a,利用面积公式S矩形MNPQ=﹣(a﹣5)2+25,即可得出结果;(3)延长BA、DE交于点F,延长BC、ED交于点G,延长AE、CD交于点H,取BF中点I,FG的中点K,连接IK,过点K作KL⊥BC于L,由矩形性质知AE=EH=10、CD=DH=8,分别证△AEF≌△HED、△CDG≌△HDE得AF=DH=8、CG=HE=10,从而判断出中位线IK的两端点在线段AB和DE上,利用(1)的结论解答即可.【详解】(1)正确;理由:设BF=x(0<x<12),∵AB=12,∴AF=12﹣x,过点F作FE∥BC交AC于E,过点E作ED∥AB交BC于D,∴四边形BDEF是平行四边形,∵∠B=90°,∴▱BDEF是矩形,∵EF∥BC,∴△AFE∽△ABC,∴=,∴,∴EF=(12﹣x),∴S矩形BDEF=EF•BF=(12﹣x)•x=﹣(x﹣6)2+24∴当x=6时,S矩形BDEF最大=24,∴BF=6,AF=6,∴AF=BF,∴当沿着中位线DE、EF剪下时,所得的矩形的面积最大;(2)设DE=a,(0<a<10),∵AD=10,∴AE=10﹣a,∵四边形MNPQ是矩形,∴PQ=DE=a,PN∥BC,∴△APN∽△ABC,∴=,∴=,∴PN=10﹣a,∴S矩形MNPQ=PN•PQ=(10﹣a)•a=﹣(a﹣5)2+25,∴当a=5时,S矩形MNPQ最大为25;(3)延长BA、DE交于点F,延长BC、ED交于点G,延长AE、CD交于点H,取BF中点I,FG的中点K,连接IK,过点K作KL⊥BC于L,如图③所示:∵∠A=∠HAB=∠BCH=90°,∴四边形ABCH是矩形,∵AB=16,BC=20,AE=10,CD=8,∴EH=10、DH=8,∴AE=EH、CD=DH,在△AEF和△HED中,,∴△AEF≌△HED(ASA),∴AF=DH=8,∴BF=AB+AF=16+8=24,同理△CDG≌△HDE,∴CG=HE=10,∴BG=BC+CG=20+10=30,∴BI=BF=12,∵BI=12<16,∴中位线IK的两端点在线段AB和DE上,∴IK=BG=15,由(1)知矩形的最大面积为BI•IK=12×15=1.【点睛】本题是四边形综合题,主要考查矩形的判定与性质、平行四边形的判定、全等三角形的判定与性质、中位线定理、相似三角形的判定与性质等知识;熟练掌握矩形的性质、全等三角形的判定与相似三角形的判定是解题的关键.23、(1)70,70,85,85;(2)数学.【分析】(1)由平均数、中位数的定义进行计算即可;(2)代入公式:标准分=(个人成绩﹣平均成绩)÷成绩方差计算,再比较即可.【详解】(1)数学平均分是:×(71+72+69+68+70)=70分,中位数为:70分;英语平均分是:×(88+82+94+85+76)=85分,中位数为:85分;故答案为:70,70,85,85;(2)数学成绩的方差为:[(71﹣70)2+(72﹣70)2+(69﹣70)2+(68﹣70)2+(70﹣70)2]=2;英语成绩的方差为:[(88﹣85)2+(82﹣85)2+(94﹣85)2+(85﹣85)2+(76﹣85)2]=36;A同学数学标准分为:=,A同学英语标准分为:=,因为,所以A同学在本次考试中,数学学科考得更好.【点睛】本题考查了平均数和方差的计算,正确把握方差的定义是解题关键.24、(1)抛物线的解析式是y=x2+x+3;(2)|MB﹣MD|取最大值为;(3)存在点P(1,6).【分析】(1)根据待定系数法,可得函数解析式;(2)根据对称性,可得MC=MD,根据解方程组,可得B点坐标,根据两边之差小于第三边,可得B,C,M共线,根据勾股定理,可得答案;(3)根据等腰直角三角形的判定,可得∠BCE,∠ACO,根据相似三角形的判定与性质,可得关于x的方程,根据解方程,可得x,根据自变量与函数值的对应关系,可得答案.【详解】解:(1)将A(0,3),C(﹣3,0)代入函数解析式,得,解得,抛物线的解析式是y=x2+x+3;(2)由抛物线的对称性可知,点D与点C关于对称轴对称,∴对l上任意一点有MD=MC,联立方程组,解得(不符合题意,舍),,∴B(﹣4,1),当点B,C,M共线时,|MB﹣MD|取最大值,即为BC的长,过点B作BE⊥x轴于点E,,在Rt△BEC中,由勾股定理,得BC=,|MB﹣MD|取最大值为;(3)存在点P使得以A,P,Q为顶点的三角形与△ABC相似,在Rt△BEC中,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论