山东省无棣二中2023学年高三第一次调研测试数学试卷(含解析)_第1页
山东省无棣二中2023学年高三第一次调研测试数学试卷(含解析)_第2页
山东省无棣二中2023学年高三第一次调研测试数学试卷(含解析)_第3页
山东省无棣二中2023学年高三第一次调研测试数学试卷(含解析)_第4页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023学年高考数学模拟测试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若复数()是纯虚数,则复数在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.大衍数列,米源于我国古代文献《乾坤谱》中对易传“大衍之数五十”的推论,主要用于解释我国传统文化中的太极衍生原理,数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和.已知该数列前10项是0,2,4,8,12,18,24,32,40,50,…,则大衍数列中奇数项的通项公式为()A. B. C. D.3.已知向量,夹角为,,,则()A.2 B.4 C. D.4.若与互为共轭复数,则()A.0 B.3 C.-1 D.45.函数的部分图象如图所示,则的单调递增区间为()A. B.C. D.6.已知复数z满足,则在复平面上对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.函数图像可能是()A. B. C. D.8.已知偶函数在区间内单调递减,,,,则,,满足()A. B. C. D.9.已知F是双曲线(k为常数)的一个焦点,则点F到双曲线C的一条渐近线的距离为()A.2k B.4k C.4 D.210.设,均为非零的平面向量,则“存在负数,使得”是“”的A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件11.已知,,那么是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.已知等差数列中,若,则此数列中一定为0的是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.己知双曲线的左、右焦点分别为,直线是双曲线过第一、三象限的渐近线,记直线的倾斜角为,直线,,垂足为,若在双曲线上,则双曲线的离心率为_______14.设等比数列的前项和为,若,则数列的公比是.15.某部门全部员工参加一项社会公益活动,按年龄分为三组,其人数之比为,现用分层抽样的方法从总体中抽取一个容量为20的样本,若组中甲、乙二人均被抽到的概率是,则该部门员工总人数为__________.16.如图,养殖公司欲在某湖边依托互相垂直的湖岸线、围成一个三角形养殖区.为了便于管理,在线段之间有一观察站点,到直线,的距离分别为8百米、1百米,则观察点到点、距离之和的最小值为______________百米.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知.(1)若的解集为,求的值;(2)若对任意,不等式恒成立,求实数的取值范围.18.(12分)已知数列满足,等差数列满足,(1)分别求出,的通项公式;(2)设数列的前n项和为,数列的前n项和为证明:.19.(12分)如图,在平面直角坐标系中,已知圆C:,椭圆E:()的右顶点A在圆C上,右准线与圆C相切.(1)求椭圆E的方程;(2)设过点A的直线l与圆C相交于另一点M,与椭圆E相交于另一点N.当时,求直线l的方程.20.(12分)已知函数.(1)求的单调区间;(2)讨论零点的个数.21.(12分)已知等腰梯形中(如图1),,,为线段的中点,、为线段上的点,,现将四边形沿折起(如图2)(1)求证:平面;(2)在图2中,若,求直线与平面所成角的正弦值.22.(10分)已知椭圆:过点,过坐标原点作两条互相垂直的射线与椭圆分别交于,两点.(1)证明:当取得最小值时,椭圆的离心率为.(2)若椭圆的焦距为2,是否存在定圆与直线总相切?若存在,求定圆的方程;若不存在,请说明理由.

2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】

化简复数,由它是纯虚数,求得,从而确定对应的点的坐标.【题目详解】是纯虚数,则,,,对应点为,在第二象限.故选:B.【答案点睛】本题考查复数的除法运算,考查复数的概念与几何意义.本题属于基础题.2、B【答案解析】

直接代入检验,排除其中三个即可.【题目详解】由题意,排除D,,排除A,C.同时B也满足,,,故选:B.【答案点睛】本题考查由数列的项选择通项公式,解题时可代入检验,利用排除法求解.3、A【答案解析】

根据模长计算公式和数量积运算,即可容易求得结果.【题目详解】由于,故选:A.【答案点睛】本题考查向量的数量积运算,模长的求解,属综合基础题.4、C【答案解析】

计算,由共轭复数的概念解得即可.【题目详解】,又由共轭复数概念得:,.故选:C【答案点睛】本题主要考查了复数的运算,共轭复数的概念.5、D【答案解析】

由图象可以求出周期,得到,根据图象过点可求,根据正弦型函数的性质求出单调增区间即可.【题目详解】由图象知,所以,,又图象过点,所以,故可取,所以令,解得所以函数的单调递增区间为故选:.【答案点睛】本题主要考查了三角函数的图象与性质,利用“五点法”求函数解析式,属于中档题.6、A【答案解析】

设,由得:,由复数相等可得的值,进而求出,即可得解.【题目详解】设,由得:,即,由复数相等可得:,解之得:,则,所以,在复平面对应的点的坐标为,在第一象限.故选:A.【答案点睛】本题考查共轭复数的求法,考查对复数相等的理解,考查复数在复平面对应的点,考查运算能力,属于常考题.7、D【答案解析】

先判断函数的奇偶性可排除选项A,C,当时,可分析函数值为正,即可判断选项.【题目详解】,,即函数为偶函数,故排除选项A,C,当正数越来越小,趋近于0时,,所以函数,故排除选项B,故选:D【答案点睛】本题主要考查了函数的奇偶性,识别函数的图象,属于中档题.8、D【答案解析】

首先由函数为偶函数,可得函数在内单调递增,再由,即可判定大小【题目详解】因为偶函数在减,所以在上增,,,,∴.故选:D【答案点睛】本题考查函数的奇偶性和单调性,不同类型的数比较大小,应找一个中间数,通过它实现大小关系的传递,属于中档题.9、D【答案解析】

分析可得,再去绝对值化简成标准形式,进而根据双曲线的性质求解即可.【题目详解】当时,等式不是双曲线的方程;当时,,可化为,可得虚半轴长,所以点F到双曲线C的一条渐近线的距离为2.故选:D【答案点睛】本题考查双曲线的方程与点到直线的距离.属于基础题.10、B【答案解析】

根据充分条件、必要条件的定义进行分析、判断后可得结论.【题目详解】因为,均为非零的平面向量,存在负数,使得,所以向量,共线且方向相反,所以,即充分性成立;反之,当向量,的夹角为钝角时,满足,但此时,不共线且反向,所以必要性不成立.所以“存在负数,使得”是“”的充分不必要条件.故选B.【答案点睛】判断p是q的什么条件,需要从两方面分析:一是由条件p能否推得条件q;二是由条件q能否推得条件p,定义法是判断充分条件、必要条件的基本的方法,解题时注意选择恰当的方法判断命题是否正确.11、B【答案解析】

由,可得,解出即可判断出结论.【题目详解】解:因为,且.,解得.是的必要不充分条件.故选:.【答案点睛】本题考查了向量数量积运算性质、三角函数求值、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.12、A【答案解析】

将已知条件转化为的形式,由此确定数列为的项.【题目详解】由于等差数列中,所以,化简得,所以为.故选:A【答案点睛】本小题主要考查等差数列的基本量计算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】

由,则,所以点,因为,可得,点坐标化简为,代入双曲线的方程求解.【题目详解】设,则,即,解得,则,所以,即,代入双曲线的方程可得,所以所以解得.故答案为:【答案点睛】本题主要考查了直线与双曲线的位置关系,及三角恒等变换,还考查了运算求解的能力和数形结合的思想,属于中档题.14、.【答案解析】

当q=1时,.当时,,所以.15、60【答案解析】

根据样本容量及各组人数比,可求得C组中的人数;由组中甲、乙二人均被抽到的概率是可求得C组的总人数,即可由各组人数比求得总人数.【题目详解】三组人数之比为,现用分层抽样的方法从总体中抽取一个容量为20的样本,则三组抽取人数分别.设组有人,则组中甲、乙二人均被抽到的概率,∴解得.∴该部门员工总共有人.故答案为:60.【答案点睛】本题考查了分层抽样的定义与简单应用,古典概型概率的简单应用,由各层人数求总人数的应用,属于基础题.16、【答案解析】

建系,将直线用方程表示出来,再用参数表示出线段的长度,最后利用导数来求函数最小值.【题目详解】以为原点,所在直线分别作为轴,建立平面直角坐标系,则.设直线,即,则,所以,所以,,则,则,当时,,则单调递减,当时,,则单调递增,所以当时,最短,此时.故答案为:【答案点睛】本题考查导数的实际应用,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【答案解析】

(1)利用两边平方法解含有绝对值的不等式,再根据根与系数的关系求出的值;(2)利用绝对值不等式求出的最小值,把不等式化为只含有的不等式,求出不等式解集即可.【题目详解】(1)不等式,即两边平方整理得由题意知和是方程的两个实数根即,解得(2)因为所以要使不等式恒成立,只需当时,,解得,即;当时,,解得,即;综上所述,的取值范围是【答案点睛】本题考查了含有绝对值的不等式解法与应用问题,也考查了分类讨论思想,是中档题.18、(1)(2)证明见解析【答案解析】

(1)因为,所以,所以,即,又因为,所以数列为等差数列,且公差为1,首项为1,则,即.设的公差为,则,所以(),则(),所以,因此,综上,.(2)设数列的前n项和为,则两式相减得,所以,设则,所以.19、(1)(2)或.【答案解析】

(1)圆的方程已知,根据条件列出方程组,解方程即得;(2)设,,显然直线l的斜率存在,方法一:设直线l的方程为:,将直线方程和椭圆方程联立,消去,可得,同理直线方程和圆方程联立,可得,再由可解得,即得;方法二:设直线l的方程为:,与椭圆方程联立,可得,将其与圆方程联立,可得,由可解得,即得.【题目详解】(1)记椭圆E的焦距为().右顶点在圆C上,右准线与圆C:相切.解得,,椭圆方程为:.(2)法1:设,,显然直线l的斜率存在,设直线l的方程为:.直线方程和椭圆方程联立,由方程组消去y得,整理得.由,解得.直线方程和圆方程联立,由方程组消去y得,由,解得.又,则有.即,解得,故直线l的方程为或.分法2:设,,当直线l与x轴重合时,不符题意.设直线l的方程为:.由方程组消去x得,,解得.由方程组消去x得,,解得.又,则有.即,解得,故直线l的方程为或.【答案点睛】本题考查求椭圆的标准方程,以及直线和椭圆的位置关系,考查学生的分析和运算能力.20、(1)见解析(2)见解析【答案解析】

(1)求导后分析导函数的正负再判断单调性即可.(2),有零点等价于方程实数根,再换元将原方程转化为,再求导分析的图像数形结合求解即可.【题目详解】(1)的定义域为,,当时,,所以在单调递减;当时,,所以在单调递增,所以的减区间为,增区间为.(2),有零点等价于方程实数根,令则原方程转化为,令,.令,,∴,,,,,当时,,当时,.如图可知①当时,有唯一零点,即有唯一零点;②当时,有两个零点,即有两个零点;③当时,有唯一零点,即有唯一零点;④时,此时无零点,即此时无零点.【答案点睛】本题主要考查了利用导数分析函数的单调性的方法,同时也考查了利用导数分析函数零点的问题,属于中档题.21、(1)见解析;(2).【答案解析】

(1)先连接,根据线面平行的判定定理,即可证明结论成立;(2)在图2中,过点作,垂足为,连接,,证明平面平面,得到点在底面上的投影必落在直线上,记为点在底面上的投影,连接,,得出即是直线与平面所成角,再由题中数据求解,即可得出结果.【题目详解】(1)连接,因为等腰梯形中(如图1),,,所以与平行且相等,即四边形为平行四边形;所以;又为线段的中点,为中点,易得:四边形也为平行四边形,所以;将四边形沿折起后,平行关系没有变化,仍有:,且,所以翻折后四边形也为平行四边形;故;因为平面,平面,所以平面;(2)在图2中,过点作,垂足为,连接,,因为,,翻折前梯形的高为,所以,则,;所以;又,,所以,即,所以;又,且平面,平面,所以平面;因此,平面平面;所以点在底面上的投影必落在直线上;记为点在底面上的投影,连接,,则平面;所以即是直线与平面所成角,因为,所以,因此,,故;因为,所以,因此,故,所以.即直线与平面所成角的正弦值为.【答案点睛】本题主要考查证明线面平行,以及求直线与平面所成的角,熟记线面平行的判定定理,以及线面角的求法即可,属于常考题型.22、(1)证明见解析;(2)存在,【答案解析】

(1)将点代入椭圆方程得到,结合基本不等式,求得取得最小值时,进而证得椭圆的离心率为.(2)当直线的斜率不存在时,根据椭圆的对称性,求得到直线的距离.当直线的斜率存在时,联立直线的方程和椭圆方程,写出韦达定理,利用,则列方程,求得的关系式,进而求得到直线的距离.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论