实际问题与一元一次方程常见题型_第1页
实际问题与一元一次方程常见题型_第2页
实际问题与一元一次方程常见题型_第3页
实际问题与一元一次方程常见题型_第4页
实际问题与一元一次方程常见题型_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

实际问题与一元一次方程(一)基础【学习目标】.熟练掌握分析解决实际问题的一般方法及步骤;.熟悉行程,工程,配套及和差倍分问题的解题思路.【要点梳理】知识点一、用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题4Hh方程HBh解答.由此可得解决此类

于田家 检验题的一般步骤为:审、找、设、歹U、解、检、答.要点诠释:(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系。(2)“找"寻找等量关系;(3)“设”就是设未知数,一般求什么就设什么为x,但有时也可以间接设未知数;(4)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一;(5)“解"就是解方程,求出未知数的值.(6)“检"就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可;(7)“答"就是写出答案,注意单位要写清楚.知识点二、常见列方程解应用题的几种类型.和、差、倍、分问题(1)基本量及关系:增长量=原有量x增长率,现有量=原有量+增长量,现有量=原有量-降低量.(2)寻找相等关系:抓住关键词列方程,常见的关键词有:多、少、和、差、不足、剩余以及倍,增长率等.参考材料(1)三个基本量间的关系:路程=速度x时间(2)基本类型有:①相遇问题(或相向问题):工•基本量及关系:相遇路程=速度和x相遇时间n.寻找相等关系:甲走的路程+乙走的路程=两地距离.②追及问题:工.基本量及关系:追及路程=速度差X追及时间n.寻找相等关系:第一,同地不同时出发:前者走的路程=追者走的路程;第二,同时不同地出发:前者走的路程+两者相距距离=追者走的路程.③航行问题:工.基本量及关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,顺水速度-逆水速度=2x水流速度;n.寻找相等关系:抓住两地之间距离不变、水流速度不变、船在静水中的速度不变来考虑..工程问题如果题目没有明确指明总工作量,一般把总工作量设为1.基本关系式:(1)总工作量=工作效率x工作时间;(2)总工作量=各单位工作量之和..调配问题寻找相等关系的方法:抓住调配后甲处的数量与乙处的数量间的关系去考虑.【典型例题】类型一、和差倍分问题参考材料1.2011年北京市生产运营用水和居民家庭用水的总和为5.8亿立方米,其中居民家庭用水比生产运营用水的3倍还多0.6亿立方米,问生产运营用水和居民家庭用水各多少亿立方米?【答案与解析】设生产运营用水x亿立方米,则居民家庭用水(5.8-x)亿立方米.依题意,得5.8-x=3x+0.6解得x=1.35.8-x=5.8-1.3=4.5(亿立方米)答:生产运营用水1.3亿立方米,居民家庭用水4.5亿立方米.【总结升华】本题要求两个未知数,不妨设其中一个未知数为x,另外一个用含x的式子表示.本题的相等关系是生产运营用水量+居民家庭用水总量=5.8亿立方米.举一反三:【变式】(麻城期末考试)麻商集团三个季度共销售冰箱2800台,第一个季度销售量是第二个季度的2倍.第三个季度销售量是第一个季度的2倍,试问麻商集团第二个季度销售冰箱多少台?【答案】解:设第二个季度麻商集团销售冰箱x台,则第一季度销售量为2x台,第三季度销售量为4x台,依题意可得:x+2x+4x=2800,解得:x=400答:麻商集团第二个季度销售冰箱400台.类型二、行程问题.一般问题O2.小山娃要到城里参加运动会,如果每小时走4千米,那么走完预订时间离县城还有0.5千米,如果他每小时走5千米,那么比预订时间早半小时就可到达县城.试问学校到县城的距离是多少千米?【答案与解析】解:设小山娃预订的时间为x小时,由题意得:4x+0.5=5(x-0.5),解得x=3.参考材料所以4x+0.5=4x3+0.5=12.5(千米).答:学校到县城的距离是12.5千米.【总结升华]当直接设未知数有困难时,可采用间接设的方法.即所设的不是最后所求的,而是通过求其它的数量间接地求最后的未知量.举一反三:【变式】某汽车在一段坡路上往返行驶,上坡的速度为10千米/时,下坡的速度为20千米/时,求汽车的平均速度.【答案】a解:设这段坡路长为a千米,汽车的平均速度为x千米/时,则上坡行驶的时间为历小时,下坡行驶的一.a (aa) 〜时间为右小时.依题意,得:—+—x-2a,2U I1020)化简得:3ax-40a.显然a#0,解得x-13;答:汽车的平均速度为131千米/时..相遇问题(相向问题)【高清课堂:实际问题与一元一次方程(一)388410相遇问题】C3.A、B两地相距100km,甲、乙两人骑自行车分别从A、B两地出发相向而行,甲的速度是23km/h,乙的速度是21km/h,甲骑了1h后,乙从B地出发,问甲经过多少时间与乙相遇?【答案与解析】解:设甲经过x小时与乙相遇.由题意得:23x1+(23+21)(x-1)-100 ! x小时—甲1小时-解得,x=2.75答:甲经过2.75小时与乙相遇.【总结升华】等量关系:甲走的路程+乙走的路程=100km参考材料

举一反三:【变式】甲、乙两人骑自行车,同时从相距45km的两地相向而行,2小时相遇,每小时甲比乙多走2.5km,求甲、乙每小时各行驶多少千米?【答案】解:设乙每小时行驶x千米,则甲每小时行驶(x+2.5)千米,根据题意,得:2(x+2.5)+2x=45解得:x=10x+2.5=10+2.5=12.5(千米)答:甲每小时行驶12.5千米,乙每小时行驶10千米.追及问题(同向问题)O4.一队学生去校外进行军事野营训练,他们以5千米/时的速度行进,走了18分钟时,学校要将一紧急通知传给队长,通讯员从学校出发,骑自行车以14千米/时的速度按原路追上去,通讯员用多少分钟可以追上学生队伍?【答案与解析】解:设通讯员x小时可以追上学生队伍,则根据题意,得14x=5x +5x60得:x=6,6小时=10分钟.答:通讯员用10分钟可以追上学生队伍.【总结升华】追及问题:路程差=速度差x时间,此外注意:方程中x表示小时,18表示分钟,两边单位不一致,应先统一单位.05.航行问题(顺逆风问题05・一艘船航行于A、B两个码头之间,轮船顺水航行需3小时,逆水航行需5小时,已知水流速度是4千米/时,求这两个码头之间的距离.参考材料【答案与解析】解法1:设船在静水中速度为x千米/时,则船顺水航行的速度为仪+4)千米/时,逆水航行的速度为(x-4)千米/时,由两码头的距离不变得方程:3(x+4)=5(x-4),解得:x=16,(16+4)*3=60(千米)答:两码头之间的距离为60千米.X x解法2:设A、B两码头之间的距离为x千米,则船顺水航行时速度为3千米/时,逆水航行时速度为5 X .X. 一千米/时,由船在静水中的速度不变得方程:3-4=5+4,解得:X=60答:两码头之间的距离为60千米.【总结升华】顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度,根据两个码头的距离不变或船在静水中的速度不变列方程.类型三、工程问题6.一个水池有两个注水管,两个水管同时注水,10小时可以注满水池;甲管单独开15小时可以注满水池,现两管同时注水7小时,关掉甲管,单独开乙管注水,还需要几小时能注满水池?【思路点拨】视水池的蓄水量为"1”,设乙管还需x小时可以注满水池;那么甲乙合注1小时注水池的1 1 7 11 1上,甲管单独注水每小时注水池的—,合注7小时注水池的7-,乙管每小时注水池的—-上.10 15 10 11015)【答案与解析】解:设乙管还需x小时才能注满水池..一一,一.一,1 11 7由题意得方程:—-—x=1--(1015) 10解此方程得:x=9答:单独开乙管,还需9小时可以注满水池.【总结升华】工作效率X工作时间=工作量,如果没有具体的工作量,一般视总的工作量为“1”.举一反三:参考材料【变式】修建某处住宅区的自来水管道,甲单独完成需14天,乙单独完成需18天,丙单独完成需12天,前7天由甲、乙两人合作,但乙中途离开了一段时间,后两天由乙、丙合作完成问乙中途离开了几天?【答案】解:设乙中途离开x天,由题意得—x7+—(7-x+2)+—x2=114 18 12解得:%=3答:乙中途离开了3天类型四、调配问题(比例问题、劳动力调配问题)O7.星光服装厂接受生产某种型号的学生服的任务,已知每3m长的某种布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,计划用750m长的这种布料生产学生服,应分别用多少布料生产上衣和裤子才能恰好配套?共能生产多少套?【思路点拨】每3米布料可做上衣2件或裤子3条,意思是每1米布料可做上衣-件,或做裤子1条,3此外恰好配套说明裤子的数量应该等于上衣的数量.【答案与解析】, ……一 x八, 750 —x-解:设做上衣需要xm,则做裤子为(750-x)m,做上衣的件数为3x2件,做裤子的件数为x3,解得:x=450,750-x=750-450=300(m),45:x2-300(套)答:用450m做上衣,300m做裤子恰好配套,共能生产300套.【总结升华】用参数表示上衣总件数与裤子的总件数,等量关系:上衣总件数=裤子的总件数.举一反三:【高清课堂:实际问题与一元一次方程(一)调配问题】参考材料【变式】甲队有72人,乙队有68人,需要从甲队调出多少人到乙队,才能使甲队恰好是乙队人数的3解:设从甲队调出x人到乙队.由题意得,解得,x=12.3答:需要从甲队调出12人到乙队,才能使甲队恰好是乙队人数的34实际问题与一元一次方程(二)(提高)【学习目标】.熟练掌握分析解决实际问题的一般方法及步骤;.熟悉行程,工程,配套及和差倍分问题的解题思路.【要点梳理】要点一、用一元一次方程解决实际问题的一般步骤要点二、常见列方程解应用题的几种类型(待续).和、差、倍、分问题(1)基本量及关系:增长量=原有量*增长率,现有量=原有量+增长量,现有量=原有量-降低量.(2)寻找相等关系:抓住关键词列方程,常见的关键词有:多、少、和、差、不足、剩余以及倍,增长率等..行程问题(1)三个基本量间的关系:路程=速度x时间(2)基本类型有:①相遇问题(或相向问题):1.基本量及关系:相遇路程=速度和x相遇时间n.寻找相等关系:甲走的路程+乙走的路程=两地距离.参考材料②追及问题:I.基本量及关系:追及路程=速度差X追及时间n.寻找相等关系:第一,同地不同时出发:前者走的路程=追者走的路程;第二,同时不同地出发:前者走的路程+两者相距距离=追者走的路程.③航行问题:i.基本量及关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,顺水速度-逆水速度=2x水速;n.寻找相等关系:抓住两地之间距离不变、水流速度不变、船在静水中的速度不变来考虑..工程问题如果题目没有明确指明总工作量,一般把总工作量设为1.基本关系式:(1)总工作量=工作效率x工作时间;(2)总工作量=各单位工作量之和..调配问题寻找相等关系的方法:抓住调配后甲处的数量与乙处的数量间的关系去考虑.【典型例题】类型一、和差倍分问题O1.旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?【答案与解析】解:设油箱里原有汽油x公斤,由题意得:x(1-25%)(1-40%)+1=25%x+(1-25%)xx4O%解得:x=10参考材料

答:油箱里原有汽油10公斤.【点评】等量关系为:油箱中剩余汽油+1=用去的汽油.举一反三:【变式】某班举办了一次集邮展览,展出的邮票若平均每人3张则多24张,若平均每人4张则少26张,这个班有多少学生?一共展出了多少张邮票?【答案】解:设这个班有x名学生,根据题意得:3x+24=4x-26解得:x=50所以3x+24=3x50+24=174答:这个班有50名学生,一共展出了174张邮票.类型二、行程问题.车过桥问题O2.某桥长1200m,现有一列匀速行驶的火车从桥上通过,测得火车从上桥到完全过桥共用了50s,而整个火车在桥上的时间是30s,求火车的长度和速度.【思路点拨】正确理解火车“完全过桥”和“完全在桥上”的不同含义.【答案与解析】解:设火车车身长为xm,根据题意,得:1200+x_1200—x50 30,解得:x=300,1200+x_1200+3005050^所以 = 5050答:火车的长度是300m,车速是30m/s.(1)(2)【点(1)(2)【点“完全在桥上”是两种不同的情况,借助线段图分析如下(注:A点表示火车头):(1)火车从上桥到完全过桥如图(1)所示,此时火车走的路程是桥长+车长.(2)火车完全在桥上如图(2)所示,此时火车走的路程是桥长-车长.由于火车是匀速行驶的,所以等量关系是火车从上桥到完全过桥的速度=整个火车在桥上的速度.举一反三:【变式】某要塞有步兵692人,每4人一横排,各排相距1米向前行走,每分钟走86米,通过长86米的桥,从第一排上桥到排尾离桥需要几分钟?【答案】解:设从第一排上桥到排尾离桥需要x分钟,列方程得:(692 、86x=——-1义1+86,I4J解得:x=3答:从第一排上桥到排尾离桥需要3分钟..相遇问题(相向问题)C3.小李骑自行车从A地到B地,小明骑自行车从B地到A地,两人都匀速前进.已知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12点,两人又相距36千米.求A、B两地间的路程.【答案与解析】参考材料解:设A、B两地间的路程为x千米,由题意得:x-36_x+364~解得:X=108.答:A、B两地间的路程为108千米.【点评】根据“匀速前进”可知A、B的速度不变,进而A、B的速度和不变.利用速度和二小李和小明前进的路程和/时间可得方程.举一反三:【高清课堂:实际问题与一元一次方程(一)388410二次相遇问题】【变式】甲、乙两辆汽车分别从A、B两站同时开出,相向而行,途中相遇后继续沿原路线行驶,在分别到达对方车站后立即返回,两车第二次相遇时距A站34km,已知甲车的速度是70km/h,乙车的速度是52km/h,求A、B两站间的距离.【答案】解:设A、B两站间的距离为xkm,由题意得:解得:x=122答:A、B两站间的距离为122km..追及问题(同向问题)O4,一辆卡车从甲地匀速开往乙地,出发2小时后,一辆轿车从甲地去追这辆卡车,轿车的速度比卡车的速度每小时快30千米,但轿车行驶一小时后突遇故障,修理15分钟后,又上路追这辆卡车,但速度减小了3,结果又用两小时才追上这辆卡车,求卡车的速度•【答案与解析】解:设卡车的速度为x千米/时,由题意得:2x+x+4x+2x=(x+30)+(1-Jx(x+30)x2解得:x=24参考材料

答:卡车的速度为24千米/时.【点评】采用“线示”分析法,画出示意图.利用轿车行驶的总路程等于卡车行驶的总路程来列方程,理清两车行驶的速度与时间..航行问题(顺逆风问题).盛夏,某校组织长江夜游,在流速为2.5千米/时的航段,从A地上船,沿江而下至B地,然后溯江而上到C地下船,共乘船4小时.已知A、C两地相距10千米,船在静水中的速度为7.5千米/时,求A、B两地间的距离.【思路点拨】由于C的位置不确定,要分类讨论:(1)C地在A、B之间;(2)C地在A地上游.【答案与解析】解:设A、B两地间的距离为x千米.(1)当C地在A、B两地之间时,依题意得.TOC\o"1-5"\h\z\o"CurrentDocument"xx一10 , + =47.5+2.57.5一2.5解这个方程得:乂=20(千米)(2)当C地在A地上游时,依题意得:\o"CurrentDocument"x x+10 , + =47.5+2.57.5-2.5解这个方程得:x=203答:A、B两地间的距离为20千米或—千米.3【点评】这是航行问题,本题需分类讨论,采用“线示”分析法画出示意图(如下图所示),然后利用“共乘"4小时构建方程求解.小时构建方程求解..环形问题.环城自行车赛,最快的人在开始48分钟后遇到最慢的人,已知最快的人的速度是最慢的人速度参考材料

的3T倍,环城一周是20千米,求两个人的速度.【答案与解析】解;设最慢的人速度为x千米/时,则最快的人的速度为Xx千米/时,由题意得:入X%-XX%=202 60 60解得:x=10答:最快的人的速度为35千米/时,最慢的人的速度为10千米/时.【点评】这是环形路上的追及问题,距离差为环城一周20千米.相等关系为:最快的人骑的路程-最慢人骑的路程=20千米.举一反三:【变式】两人沿着边长为90m的正方形行走,按AtBtC—DtA…方向,甲从A以65m/min的速度,乙从B以72m/min的速度行走,如图所示,当乙第一次追上甲时,在正方形的哪一条边上?【答案】解:设乙追上甲用了x分钟,则有:72x-65x=3x90270八x=—(分)270答:乙第一次追上甲时走了72x—72777(m)此时乙在AD边上类型三、工程问题.一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池?【答案与解析】参考材料解:设再过x小时可把水注满.由题意得:TOC\o"1-5"\h\z\o"CurrentDocument"4,1 1.11、 ।(一十一)x2+(一+———)x—18 689… 30 c4解得:x—13—213•\o"CurrentDocument"- - -4 ― ―答:打开丙管后2分小时可把水放满.【点评】相等关系:甲、乙开2h的工作量+甲、乙、丙水管的工作量=1.举一反三:2【变式】收割一块水稻田,若每小时收割4亩,预计若干小时完成,收割3后,改用新式农机,工作效率提高到原来的11倍,因此比预计时间提早1小时完成,求这块水稻田的面积.【答案】解:设这块水稻田的面积为X亩,由题意得:TOC\o"1-5"\h\z\o"CurrentDocument"2 1—x -x\o"CurrentDocument"x=3_,_4 4 11x4Xx

2解得:x—36.答:这块水稻田的面积为36亩.类型四、配套问题(比例问题、劳动力调配问题)O8.某工程队每天安排120个工人修建水库,平均每天每个工人能挖土5m3或运土3m3,为了使挖出的土及时被运走,问:应如何安排挖土和运土的工人?【答案与解析】解:设安排x人挖土,则运土的有(120-x)人,依题意得:5x=3(120-x),解得x=45.120-45=75(人).答:应安排45人挖土,75人运土.参考材料【点评】用参数表示挖土数与运土数,等量关系:挖土与运土的总立方米数应相等.举一反三:【高清课堂:实际问题与一元一次方程(一) 配制问题】【变式】某商店选用A、B两种价格分别是每千克28元和每千克20元的糖果混合成杂拌糖果后出售,为使这种杂拌糖果的售价是每千克25元,要配制这种杂拌糖果100千克,问要用这两种糖果各多少千克?【答案】解:设要用A种糖果x千克,则B种糖果用(100-x)千克.依题意,得:28x+20(100-x)=25x100解得:x=62.5.当x=62.5时,100-x=37.5.答:要用A、B两种糖果分别为62.5千克和37.5千克.实际问题与一元一次方程(三)(基础)【学习目标】(1)进一步提高分析实际问题中数量关系的能力,能熟练找出相等关系并列出方程;(2)熟悉利润,存贷款,数字及方案设计问题的解题思路.【要点梳理】要点一、用一元一次方程解决实际问题的一般步骤要点三、常见列方程解应用题的几种类型(续)(1)利润率=利润100%进价(2)标价=成本(或进价)x(1+利润率)参考材料(3)实际售价=标价x打折率(4)利润=售价-成本(或进价)=成本x利润率注意:“商品利润=售价-成本”中的右边为正时,是盈利;当右边为负时,就是亏损.打几折就是按标价的十分之几或百分之几十销售.2.存贷款问题(1)利息=本金x利率x期数(2)本息和(本利和)=本金+利息=本金+本金x利率*期数=本金x(1+利率*期数)(3)实得利息=利息-利息税(4)利息税=利息*利息税率(5)年利率=月利率x12(6)月利率=年利率x,12.数字问题已知各数位上的数字,写出两位数,三位数等这类问题一般设间接未知数,例如:若一个两位数的个位数字为a,十位数字为b,则这个两位数可以表示为10b+a..方案问题选择设计方案的一般步骤:(1)运用一元一次方程解应用题的方法求解两种方案值相等的情况.(2)用特殊值试探法选择方案,取小于(或大于)一元一次方程解的值,比较两种方案的优劣性后下结论.【典型例题】类型一、利润问题【高清课堂:实际问题与一元一次方程(二)利润问题例2】01.以现价销售一件商品的利润率为30%,如果商家在现有的价格基础上先提价40%,后降价50%参考材料

的方法进行销售,商家还能有利润吗?为什么?【答案与解析】解:设该商品的成本为a元,则商品的现价为(1+30%)a元,依题意其后来折扣的售价为(1+30%)a・(1+40%)(1-50%)=0・91a.•••0.91a-a=-0.09a,-009a0.09a・100%=-9%.a答:商家不仅没有利润,而且亏损的利润率为9%.【总结升华】解答此类问题时,一定要弄清题意.分清售价、进价、数量、利润之间的关系很重要.举一反三:【高清课堂:实际问题与一元一次方程(二)388413利润问题例3】【变式1】某个商品的进价是500元,把它提价40%后作为标价.如果商家要想保住12%的利润率搞促销活动,请你计算一下广告上可写出打几折?【答案】解:设该商品打x折,依题意,贝h500(1+40%)-土=500(1+12%).10x=10xx=10xl.121.4=8.答:该商品的广告上可写上打八折.【变式2】张新和李明相约到图书大厦去买书,请你根据他们的对话内容(如图所示),求出李明上次所买书籍的原价.【答案】解:设李明上次购买书籍的原价为x元,由题意得:0.8x+20=x-12,解这个方程得:x=160.参考材料答:李明上次所买书籍的原价是160元.类型二、存贷款问题2.爸爸为小强存了一个五年期的教育储蓄,年利率为2.7%,五年后取出本息和为17025元,爸爸开始存入多少元.【答案与解析】解:设爸爸开始存入x元.根据题意,得x+xx2.7%x5=17025.解之,得x=15000答:爸爸开始存入15000元.【总结升华】本息和=本金+利息,利息=本金x利率又期数.类型三、数字问题O3,一个三位数,十位上的数是百位上的数的2倍,百位、个位上的数的和比十位上的数大2,又个位、十位、百位上的数的和是14,求这个三位数.【答案与解析】解:设百位上的数为x,则十位上的数为2x,个位上的数为14-2x-x由题意得:x+14-2x-x=2x+2解得:x=3:.x=3,2x=6,14-2x-x=5答:这个三位数为365【总结升华】在数字问题中应注意:(1)求的是一个三位数,而不是三个数;(2)这类应用题,一般设间接未知数,切勿求出x就答;(3)三位数字的表示方法是百位上的数字乘以100,10位上的数字乘以10,然后把所得的结果和个位数字相加.举一反三:参考材料【变式】一个两位数,个位上的数字比十位上的数字大4,这个两位数又是这两个数字的和的4倍,求这个两位数.【答案】解:设十位上的数字为x,则个位上的数字为(x+4),由题意得:10x+(x+4)=[x+(x+4)]义4解得:x=44义10+(4+4)=48答:这两位数是48.类型四、方案设计问题O4・为鼓励学生参加体育锻炼.学校计划拿出不超过1600元的资金再购买一批篮球和排球.已知篮球和排球的单价比为3:2,单价和为80元.(1)篮球和排球的单价分别是多少元?(2)若要求购买的篮球和排球的总数量是36个,且购买的篮球数量不少于26个.请探究有哪几种购买方案?【答案与解析】解:(1)设篮球和排球的单价分别为3x元和2x元.依题意3x+2x=80,解得x=16即3x=48,2x=32答:篮球和排球的单价分别为48元和32元.(2)采用列表法探索:类别方案篮球(x个)排球(36-x)个合计(元)(1)26101568(2)2791584(3)2881600参考材料(4)2971616由列表可知,共有三种购买方案:方案一:购买篮球26个,排球10个;方案二:购买篮球27个,排球9个;方案三:购买篮球28个,排球8个.【总结升华】本例设未知数的方法很独特,值得借鉴.采用列表的方法探索方案,值得学习.举一反三:【变式】(武昌区期末调考)某校组织10位教师和部分学生外出考察,全程票价为25元,对集体购票,客运公司有两种优惠方案可供选择:方案一:所有师生按票价的88%购票;方案二:前20人购全票,从第21人开始,每人按票价的80%购票.(1)若有30位学生参加考察,问选择哪种方案更省钱?(2)参加考察的学生人数是多少时,两种方案车费一样多?【答案】解:设有x位学生参加考察.按方案一购票费用为:25x88%(10+x)=22x+220按方案二购票费用为:20x25+25x80%(x+10-20)=20x+300(1)当x=30时:22x+220=660+220=880(元)20x+300=600+300=900(元)答:当有30位学生参加考察,选择方案一更省钱.(2)设22x+220=20x+300,解得:x=40答:参加考察的学生人数为40人时,两种方案车费一样多.参考材料实际问题与一元一次方程(四)(提高)【学习目标】(1)进一步提高分析实际问题中数量关系的能力,能熟练找出相等关系并列出方程;(2)熟悉利润,存贷款,数字及方案设计问题的解题思路.【要点梳理】要点一、用一元一次方程解决实际问题的一般步骤要点三、常见列方程解应用题的几种类型(续)(1)利润率=皿100%进价(2)售价=(1+利润率).成本(3)售价=标价x打折率(4)利润=售价-成本(或进价) 利润=成本x利润率注意:“商品利润=售价-成本”中的商品利润为正时,是盈利;当为商品利润负时,就是亏损.打几折就是按标价的十分之几或百分之几十销售..存贷款问题(1)利息=本金x利率x期数(2)本息和(本利和)=本金+利息=本金+本金x利率x期数=本金x(1+利率x期数)(3)实得利息=利息-利息税参考材料(4)利息税=利息*利息税率(5)年利率=月利率x12(6)月利率=年利率x—12.数字问题已知各数位上的数字,写出两位数,三位数等这类问题一般设间接未知数,例如:若一个两位数的个位数字为a,十位数字为b,则这个两位数可以表示为10b+a..方案问题选择设计方案的一般步骤:(1)运用一元一次方程解应用题的方法求解两种方案值相等的情况.(2)用特殊值试探法选择方案,取小于(或大于)一元一次方程解的值,比较两种方案的优劣性后下结论.【典型例题】类型一、利润问题01.文星商店以每支4元的价格进100支钢笔,卖出时每支的标价6元,当卖出一部分钢笔后,剩余的打9折出售,卖完时商店赢利188元,其中打9折的钢笔有几支?【答案与解析】解:设打折的钢笔有x支,则有:6(100-x)+6x9O%x=1OOx4+188解得x=20答:打9折的钢笔有20支.【总结升华】本题可以采用列表法分析问题:参考材料售价数量售出总价按标价出售6100-x6(100-x)剩余的打折出售6x90%x6x90%x此外本题还可以这样列方程:(6-4)(100-x)+(6x0.9-4)x=188,这是以利润作为相等关系来构建方程的,其结果一样.举一反三:【高清课堂:实际问题与一元一次方程(二)388413思考与研究1]【变式】某种商品的标价为900元,为了适应市场竞争,店主打出广告:该商品九折出售,并返100元现金.这样他仍可获得10%的利润率(相对于进货价),问此商品的进货价是多少?(用四舍五入法精确到个位)【答案]解:设此商品的进货价为x元,依题意,得:(9OOxO.9-100)-x=10%x,得:x=645— x^645.11答:此商品的进价约为645元.类型二、存贷款问题C2.某公司从银行贷款20万元,用来生产某种产品,已知该贷款的年利率为15%(不计复利),每个产品成本是3.2元,售价是5元,应纳税款为销售款的10%.如果每年生产10万个,并把所得利润(利润=售价-成本-应纳税款)用来偿还贷款,问几年后能一次性还清?【答案与解析]解:设x年后能一次性还清贷款,根据题意,得(5-3.2-5x10%)・10x=20+20x15%x.解之,得x=2.答:所以2年后能一次性还清贷款.【总结升华]解答本题利用了类比的数学方法,把贷款与存款相类比,贷款金额相当于存款本金,贷款的年利率相当于存款的年利率,每年产品的利润=售价-成本-应纳税款,产品的总利润等于本息和.举一反三:参考材料【高清课堂:实际问题与一元一次方程(二)388413贷款问题】【变式】小华父母为了准备她上大学时的16000元学费,在她上初一时参加教育储蓄,准备先存一部分,等她上大学时再贷一部分.小华父母存的是六年期(年利率为2.88%),上大学贷款的部分打算用8年时间还清(年贷款利息率为6.21%),贷款利息的50%由政府补贴.如果参加教育储蓄所获得的利息与申请贷款所支出的利息相等,小华父母用了多少钱参加教育储蓄?还准备贷多少款?【答案】解:设小华父母用x元参加教育储蓄,依题意,xx2.88%x6=(16000-x)x6.21%x8x50%,解得,x%436阮)16000-9436=6564(元).答:小华父母用9436元参加教育储蓄,还准备贷6564元.类型三、数字问题O3.一个两位数,十位数字比个位数字的4倍多1,将这两个数字调换顺序所得的数比原数小63,求原数.【答案与解析】解:设这个两位数的个位数字为x,则十位数字为4x+1.根据题意得:10(4x+1)+x=10x+(4x+1)+63,解得x=2,参考材料4x+1=4x2+1=9,故这个两位数为92.答:这个两位数是92.【总结升华】在数字问题中应注意:(1)求的是一个两位数,而不是两个数;(2)这类应用题,一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论