版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四年级奥数《高斯求和》答案及解析四年级奥数《高斯求和》答案及解析四年级奥数《高斯求和》答案及解析V:1.0精细整理,仅供参考四年级奥数《高斯求和》答案及解析日期:20xx年X月高斯求和德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:1+2+3+4+…+99+100=?
老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。高斯为什么算得又快又准呢?原来小高斯通过细心观察发现:
1+100=2+99=3+98=…=49+52=50+51。1~100正好可以分成这样的50对数,每对数的和都相等。于是,小高斯把这道题巧算为(1+100)×100÷2=5050。小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。例如:(1)1,2,3,4,5,…,100;(2)1,3,5,7,9,…,99;(3)8,15,22,29,36,…,71。其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。由高斯的巧算方法,得到等差数列的求和公式:和=(首项+末项)×项数÷2。]例11+2+3+…+1999=?
分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。由等差数列求和公式可得原式=(1+1999)×1999÷2=1999000。注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。例211+12+13+…+31=?
分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。原式=(11+31)×21÷2=441。在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。根据首项、末项、公差的关系,可以得到项数=(末项-首项)÷公差+1,末项=首项+公差×(项数-1)。例33+7+11+…+99=?
分析与解:3,7,11,…,99是公差为4的等差数列,项数=(99-3)÷4+1=25,原式=(3+99)×25÷2=1275。例4求首项是25,公差是3的等差数列的前40项的和。解:末项=25+3×(40-1)=142,和=(25+142)×40÷2=3340。利用等差数列求和公式及求项数和末项的公式,可以解决各种与等差数列求和有关的问题。例5在下图中,每个最小的等边三角形的面积是12厘米2,边长是1根火柴棍。问:(1)最大三角形的面积是多少平方厘米(
2)整个图形由多少根火柴棍摆成?分析:最大三角形共有8层,从上往下摆时,每层的小三角形数目及所用火柴数目如下表:由上表看出,各层的小三角形数成等差数列,各层的火柴数也成等差数列。解:(1)最大三角形面积为(1+3+5+…+15)×12=[(1+15)×8÷2]×12=768(厘米2)。2)火柴棍的数目为3+6+9+…+24=(3+24)×8÷2=108(根)。答:最大三角形的面积是768厘米2,整个图形由108根火柴摆成。例6盒子里放有三只乒乓球,一位魔术师第一次从盒子里拿出一只球,将它变成3只球后放回盒子里;第二次又从盒子里拿出二只球,将每只球各变成3只球后放回盒子里……第十次从盒子里拿出十只球,将每只球各变成3只球后放回到盒子里。这时盒子里共有多少只乒乓球?
分析与解:一只球变成3只球,实际上多了2只球。第一次多了2只球,第二次多了2×2只球……第十次多了2×10只球。因此拿了十次后,多了2×1+2×2+…+2×10=2×(1+2+…+10)=2×55=110(只)。加上原有的3只球,盒子里共有球110+3=113(只)。综合列式为:(3-1)×(1+2+…+10)+3=2×[(1+10)×10÷2]+3=113(只)。
练习1.计算下列各题:(1)2+4+6+…+200;解:项数=(末项-首项)÷公差+1=(200-2)÷2+1=1和=(首项+末项)×项数÷2,所以2+4+6+…+200=(2+200)×100÷2=10100(2)17+19+21+…+39;解:项数=(末项-首项)÷公差+1=(39-17)÷2+1=12和=(首项+末项)×项数÷2,所以17+19+21+…+39=(17+39)×12÷2=336(3)5+8+11+14+…+50;解:项数=(末项-首项)÷公差+1=(50-5)÷3+1=16和=(首项+末项)×项数÷2,所以5+8+11+14+…+50=(5+50)×16÷2=24200(4)3+10+17+24+…+101。解:项数=(末项-首项)÷公差+1=(101-3)÷7+1=15和=(首项+末项)×项数÷2,所以3+10+17+24+…+101=(3+101)×15÷2=7802.求首项是5,末项是93,公差是4的等差数列的和。解:项数=(末项-首项)÷公差+1=(93-5)÷4+1=23所以,和=(首项+末项)×项数÷2=(5+93)×23÷2=11273.求首项是13,公差是5的等差数列的前30项的和。解:末项=首项+公差×(项数-1)=13+5×(30-1)=158所以,和=(首项+末项)×项数÷2=(13+158)×30÷2=25654.时钟在每个整点敲打,敲打的次数等于该钟点数,每半点钟也敲一下。问:时钟一昼夜敲打多少次?
解:有题可知,时钟在每个整点敲打,敲打的次数等于该钟点数,时钟整点敲打的次数构成了首项为1,末项为12,公差为1的等差数列:1,2,3,4,5,…,12。那么时钟每小时整点敲打的次数的和=(首项+末项)×项数÷2=(1+12)×12÷2=78;因为每半点钟也敲一下,所以半点钟敲打总次数为12,所以时钟每小时共敲打78+12=90次;所以时钟一昼夜敲打次数为90×24=21605.求100以内除以3余2的所有数的和。解:100以内除以3余2的数有,(1×3+2),(2×3+2),(3×3+2),…(32×3+2);构成了首项为5,末项为98,公差为3的等差数列,因为,项数=(末项-首项)÷公差+1=(98-5)÷3+1=32所以,和=(首项+末项)×项数÷2=(5+98)×32÷2=16486.在所有的两位数中,十位数比个位数大的数共有多少个?
解:十位数比个位数大的数中,十位数为10的有1个:10;十位数为2的有2个:20,21;十位数为3的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度影视后期制作与剪辑服务合同范本4篇
- 2025年度专业树木种植与生态旅游开发合同4篇
- 2025年度夏令营教育成果评估与分析合同4篇
- 把羊包给他人的合同
- 2025年度林业资源开发与合作经营合同模板3篇
- 2025年度牛只运输与饲料配送综合性服务合同4篇
- 2025年度内墙涂料工程旧房翻新改造施工合同2篇
- 二零二五年度煤矿资源整合项目合同书4篇
- 2025版民宿布草租赁与民宿客栈特色文化打造合同4篇
- 2025年度股权转让与客户关系维护合同范本3篇
- 9.1增强安全意识 教学设计 2024-2025学年统编版道德与法治七年级上册
- 《化工设备机械基础(第8版)》全套教学课件
- 人教版八年级数学下册举一反三专题17.6勾股定理章末八大题型总结(培优篇)(学生版+解析)
- 2024届上海高考语文课内古诗文背诵默写篇目(精校版)
- DL-T5024-2020电力工程地基处理技术规程
- 2024年度-美团新骑手入门培训
- 初中数学要背诵记忆知识点(概念+公式)
- 驾照体检表完整版本
- 农产品农药残留检测及风险评估
- 农村高中思想政治课时政教育研究的中期报告
- 20100927-宣化上人《愣严咒句偈疏解》(简体全)
评论
0/150
提交评论