版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,已知△ABC与△DEF位似,位似中心为点O,且△ABC的面积等于△DEF面积的,则AO:AD的值为()A.2:3 B.2:5 C.4:9 D.4:132.已知与各边相切于点,,则的半径()A. B. C. D.3.如图,在线段AB上有一点C,在AB的同侧作等腰△ACD和等腰△ECB,且AC=AD,EC=EB,∠DAC=∠CEB,直线BD与线段AE,线段CE分别交于点F,G.对于下列结论:①△DCG∽△BEG;②△ACE∽△DCB;③GF·GB=GC·GE;④若∠DAC=∠CEB=90°,则2AD2=DF·DG.其中正确的是()A.①②③④ B.①②③ C.①③④ D.①②4.将抛物线先向上平移3个单位长度,再向右平移1个单位长度可得抛物线()A. B.C. D.5.如图,正方形ABCD中,BE=FC,CF=2FD,AE、BF交于点G,连接AF,给出下列结论:①AE⊥BF;②AE=BF;③BG=GE;④S四边形CEGF=S△ABG,其中正确的个数为()A.1个 B.2个 C.3个 D.4个6.已知OA=5cm,以O为圆心,r为半径作⊙O.若点A在⊙O内,则r的值可以是()A.3cm B.4cm C.5cm D.6cm7.点A(﹣3,2)关于x轴的对称点A′的坐标为()A.(3,2) B.(3,﹣2) C.(﹣3,2) D.(﹣3,﹣2)8.抛物线y=﹣x2+1向右平移2个单位长度,再向下平移3个长度单位得到的抛物线解析式是()A.y=﹣(x﹣2)2+4 B.y=﹣(x﹣2)2﹣2C.y=﹣(x+2)2+4 D.y=﹣(x+2)2﹣29.关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<3 B.m>3 C.m≤3 D.m≥310.为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房建设力度年市政府共投资亿元人民币建设廉租房万平方米,预计到年底三年共累计投资亿元人民币建设廉租房,若在这两年内每年投资的增长率都为,可列方程()A. B.C. D.11.已知则()A. B. C. D.12.如图,矩形的对角线交于点O,已知则下列结论错误的是()A. B.C. D.二、填空题(每题4分,共24分)13.西周时期,丞相周公旦设置过一种通过测定日影长度来确定时间的仪器,称为圭表.如图是一个根据北京的地理位置设计的圭表,其中,立柱高为.已知,冬至时北京的正午日光入射角约为,则立柱根部与圭表的冬至线的距离(即的长)为______.14.函数中,自变量的取值范围是_____.15.如图,已知AB,CD是☉O的直径,弧AE=弧AC,∠AOE=32°,那么∠COE的度数为________度.16.如图,反比例函数y=的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第二象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数y=的图象上运动,tan∠CAB=2,则k=_____.17.计算的结果是_______.18.抛物线y=(x﹣2)2的顶点坐标是_____.三、解答题(共78分)19.(8分)如图,四边形、、都是正方形.求证:;求的度数.20.(8分)阅读以下材料,并按要求完成相应地任务:莱昂哈德·欧拉(LeonhardEuler)是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面是欧拉发现的一个定理:在△ABC中,R和r分别为外接圆和内切圆的半径,O和I分别为其外心和内心,则.如图1,⊙O和⊙I分别是△ABC的外接圆和内切圆,⊙I与AB相切分于点F,设⊙O的半径为R,⊙I的半径为r,外心O(三角形三边垂直平分线的交点)与内心I(三角形三条角平分线的交点)之间的距离OI=d,则有d2=R2﹣2Rr.下面是该定理的证明过程(部分):延长AI交⊙O于点D,过点I作⊙O的直径MN,连接DM,AN.∵∠D=∠N,∠DMI=∠NAI(同弧所对的圆周角相等),∴△MDI∽△ANI,∴,∴①,如图2,在图1(隐去MD,AN)的基础上作⊙O的直径DE,连接BE,BD,BI,IF,∵DE是⊙O的直径,∴∠DBE=90°,∵⊙I与AB相切于点F,∴∠AFI=90°,∴∠DBE=∠IFA,∵∠BAD=∠E(同弧所对圆周角相等),∴△AIF∽△EDB,∴,∴②,任务:(1)观察发现:,(用含R,d的代数式表示);(2)请判断BD和ID的数量关系,并说明理由;(3)请观察式子①和式子②,并利用任务(1),(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;(4)应用:若△ABC的外接圆的半径为5cm,内切圆的半径为2cm,则△ABC的外心与内心之间的距离为cm.21.(8分)如图,小明欲利用测角仪测量树的高度.已知他离树的水平距离BC为10m,测角仪的高度CD为1.5m,测得树顶A的仰角为33°.求树的高度AB.(参考数据:sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)22.(10分)飞行员将飞机上升至离地面米的点时,测得点看树顶点的俯角为,同时也测得点看树底点的俯角为,求该树的高度(结果保留根号).23.(10分)某单位准备组织员工到武夷山风景区旅游,旅行社给出了如下收费标准(如图所示):设参加旅游的员工人数为x人.(1)当25<x<40时,人均费用为元,当x≥40时,人均费用为元;(2)该单位共支付给旅行社旅游费用27000元,请问这次参加旅游的员工人数共有多少人?24.(10分)定义:连结菱形的一边中点与对边的两端点的线段把它分成三个三角形,如果其中有两个三角形相似,那么称这样的菱形为自相似菱形.(1)判断下列命题是真命题,还是假命题?①正方形是自相似菱形;②有一个内角为60°的菱形是自相似菱形.③如图1,若菱形ABCD是自相似菱形,∠ABC=α(0°<α<90°),E为BC中点,则在△ABE,△AED,△EDC中,相似的三角形只有△ABE与△AED.(2)如图2,菱形ABCD是自相似菱形,∠ABC是锐角,边长为4,E为BC中点.①求AE,DE的长;②AC,BD交于点O,求tan∠DBC的值.25.(12分)如图,AB与CD相交于点O,△OBD∽△OAC,=,OB=6,S△AOC=50,求:(1)AO的长;(2)求S△BOD26.如图已知一次函数y1=2x+5与反比例函数y2=(x<0)相交于点A,B.(1)求点A,B的坐标;(2)根据图象,直接写出当y₁≤y₂时x的取值范围.
参考答案一、选择题(每题4分,共48分)1、B【分析】由△ABC经过位似变换得到△DEF,点O是位似中心,根据位似图形的性质得到AB:DO═2:3,进而得出答案.【详解】∵△ABC与△DEF位似,位似中心为点O,且△ABC的面积等于△DEF面积的,∴=,AC∥DF,∴==,∴=.故选:B.【点睛】此题考查了位似图形的性质.注意掌握位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.2、C【分析】根据内切圆的性质,得到,AE=AD=5,BD=BF=2,CE=CF=3,作BG⊥AC于点G,然后求出BG的长度,利用面积相等即可求出内切圆的半径.【详解】解:如图,连接OA、OB、OC、OD、OE、OF,作BG⊥AC于点G,∵是的内切圆,∴,AE=AD=5,BD=BF=2,CE=CF=3,∴AC=8,AB=7,BC=5,在Rt△BCG和Rt△ABG中,设CG=x,则AG=,由勾股定理,得:,∴,解得:,∴,∴,∵,∴;故选:C.【点睛】本题考查了三角形内切圆的性质,利用勾股定理解直角三角形,以及利用面积法求线段的长度,解题的关键是掌握三角形内切圆的性质,熟练运用三角形面积相等进行解题.3、A【解析】利用三角形的内角和定理及两组角分别相等证明①正确;根据两组边成比例夹角相等判断②正确;利用③的相似三角形证得∠AEC=∠DBC,又对顶角相等,证得③正确;根据△ACE∽△DCB证得F、E、B、C四点共圆,由此推出△DCF∽△DGC,列比例线段即可证得④正确.【详解】①正确;在等腰△ACD和等腰△ECB中AC=AD,EC=EB,∠DAC=∠CEB,∴∠ACD=∠ADC=∠BCE=∠BEC,∴∠DCG=180-∠ACD-∠BCE=∠BEC,∵∠DGC=∠BGE,∴△DCG∽△BEG;②正确;∵∠ACD+∠DCG=∠BCE+∠DCG,∴∠ACE=∠DCB,∵,∴△ACE∽△DCB;③正确;∵△ACE∽△DCB,∴∠AEC=∠DBC,∵∠FGE=∠CGB,∴△FGE∽△CGB,∴GF·GB=GC·GE;④正确;如图,连接CF,由②可得△ACE∽△DCB,∴∠AEC=∠DBC,∴F、E、B、C四点共圆,∴∠CFB=∠CEB=90,∵∠ACD=∠ECB=45,∴∠DCE=90,∴△DCF∽△DGC∴,∴,∵,∴2AD2=DF·DG.故选:A.【点睛】此题考查相似三角形的判定及性质,等腰三角形的性质,③的证明可通过②的相似推出所需要的条件继而得到证明;④是本题的难点,需要重新画图,并根据条件判定DF、DG所在的三角形相似,由此可判断连接CF,由此证明F、E、B、C四点共圆,得到∠CFB=∠CEB=90是解本题关键.4、A【分析】根据抛物线平移的规律:上加下减,左加右减,即可得解.【详解】平移后的抛物线为故答案为A.【点睛】此题主要考查抛物线平移的性质,熟练掌握,即可解题.5、C【分析】根据正方形的性质证明△ABE≌△BCF,可证得①AE⊥BF;
②AE=BF正确;证明△BGE∽△ABE,可得==,故③不正确;由S△ABE=S△BFC可得S四边形CEGF=S△ABG,故④正确.【详解】解:在正方形ABCD中,AB=BC,∠ABE=∠C=90,
又∵BE=CF,
∴△ABE≌△BCF(SAS),
∴AE=BF,∠BAE=∠CBF,
∴∠FBC+∠BEG=∠BAE+∠BEG=90°,
∴∠BGE=90°,
∴AE⊥BF,故①,②正确;
∵CF=2FD,BE=CF,AB=CD,
∴=,
∵∠EBG+∠ABG=∠ABG+∠BAG=90°,
∴∠EBG=∠BAE,
∵∠EGB=∠ABE=90°,
∴△BGE∽△ABE,
∴==,即BG=GE,故③不正确,
∵△ABE≌△BCF,
∴S△ABE=S△BFC,
∴S△ABE−S△BEG=S△BFC−S△BEG,
∴S四边形CEGF=S△ABG,故④正确.
故选:C.【点睛】本题主要考查了正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质等知识点,解决问题的关键是熟练掌握正方形的性质.6、D【解析】试题分析:根据题意可知,若使点A在⊙O内,则点A到圆心的大小应该小于圆的半径,因此圆的半径应该大于1.故选D考点:点与圆的位置关系7、D【分析】直接利用关于x轴对称点的性质得出符合题意的答案.【详解】解:点A(﹣3,2)关于x轴的对称点A′的坐标为:(﹣3,﹣2),故选:D.【点睛】本题考查了关于x轴对称的点的坐标特征,关于x轴对称的点:横坐标不变,纵坐标互为相反数.8、B【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:由“左加右减”的原则可知,将抛物线y=﹣x2+1向右平移2个单位长度所得的抛物线的解析式为:y=﹣(x﹣2)2+1.再向下平移3个单位长度所得抛物线的解析式为:y=﹣(x﹣2)2﹣2.故选:B.【点睛】本题考查了二次函数图象的平移,其规律是:将二次函数解析式转化成顶点式y=a(x-h)2+k
(a,b,c为常数,a≠0),确定其顶点坐标(h,k),在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”.9、A【解析】分析:根据关于x的一元二次方程x2-2x+m=0有两个不相等的实数根可得△=(-2)2-4m>0,求出m的取值范围即可.详解:∵关于x的一元二次方程x2-2x+m=0有两个不相等的实数根,∴△=(-2)2-4m>0,∴m<3,故选A.点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.10、B【分析】根据1013年市政府共投资1亿元人民币建设了廉租房,预计1015年底三年共累计投资亿元人民币建设廉租房,由每年投资的年平均增长率为x可得出1014年、1015年的投资额,由三年共投资9.5亿元即可列出方程.【详解】解:这两年内每年投资的增长率都为,则1014年投资为1(1+x)亿元,1015年投资为1(1+x)1亿元,由题意则有,故选B.【点睛】本题考查了一元二次方程的应用——增长率问题,正确理解题意是解题的关键.若原来的数量为a,平均每次增长或降低的百分率为x,经过第一次调整,就调整到a×(1±x),再经过第二次调整就是a×(1±x)(1±x)=a(1±x)1.增长用“+”,下降用“-”.11、A【解析】根据特殊角的三角函数值求解即可.【详解】∵,∴,故选:A.【点睛】本题考查了特殊角的三角函数值,比较简单,熟记特殊角的三角函数值是解题的关键.12、C【分析】根据矩形的性质得出∠ABC=∠DCB=90°,AC=BD,AO=CO,BO=DO,AB=DC,再解直角三角形判定各项即可.【详解】选项A,∵四边形ABCD是矩形,∴∠ABC=∠DCB=90°,AC=BD,AO=CO,BO=DO,∴AO=OB=CO=DO,∴∠DBC=∠ACB,∴由三角形内角和定理得:∠BAC=∠BDC=∠α,选项A正确;选项B,在Rt△ABC中,tanα=,即BC=m•tanα,选项B正确;选项C,在Rt△ABC中,AC=,即AO=,选项C错误;选项D,∵四边形ABCD是矩形,∴DC=AB=m,∵∠BAC=∠BDC=α,∴在Rt△DCB中,BD=,选项D正确.故选C.【点睛】本题考查了矩形的性质和解直角三角形,能熟记矩形的性质是解此题的关键.二、填空题(每题4分,共24分)13、【分析】直接根据正切的定义求解即可.【详解】在Rt△ABC中,约为,高为,∵tan∠ABC=,∴BC=m.故答案为:.【点睛】本题考查了解直角三角形的应用,解决此问题的关键在于正确理解题意得基础上建立数学模型,把实际问题转化为数学问题.14、【分析】根据被开方式是非负数列式求解即可.【详解】依题意,得,解得:,故答案为.【点睛】本题考查了函数自变量的取值范围,函数有意义时字母的取值范围一般从几个方面考虑:①当函数解析式是整式时,字母可取全体实数;②当函数解析式是分式时,考虑分式的分母不能为0;③当函数解析式是二次根式时,被开方数为非负数.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.15、64【分析】根据等弧所对的圆心角相等求得∠AOE=∠COA=32°,所以∠COE=∠AOE+∠COA=64°.【详解】解:∵弧AE=弧AC,(已知)
∴∠AOE=∠COA(等弧所对的圆心角相等);
又∠AOE=32°,
∴∠COA=32°,
∴∠COE=∠AOE+∠COA=64°.
故答案是:64°.【点睛】本题考查圆心角、弧、弦的关系.在同圆或等圆中,两个圆心角、两条弧、两条弦三组量之间,如果有一组量相等,那么,它们所对应的其它量也相等.16、-1【分析】连接OC,过点A作AE⊥x轴于点E,过点C作CF⊥y轴于点F,通过角的计算找出∠AOE=∠COF,结合“∠AEO=90°,∠CFO=90°”可得出△AOE∽△COF,根据相似三角形的性质得出比例式,再由tan∠CAB=2,可得出CF•OF的值,进而得到k的值.【详解】如图,连接OC,过点A作AE⊥x轴于点E,过点C作CF⊥y轴于点F.∵由直线AB与反比例函数y的对称性可知A、B点关于O点对称,∴AO=BO.又∵AC=BC,∴CO⊥AB.∵∠AOE+∠AOF=90°,∠AOF+∠COF=90°,∴∠AOE=∠COF.又∵∠AEO=90°,∠CFO=90°,∴△AOE∽△COF,∴,∵tan∠CAB2,∴CF=2AE,OF=2OE.又∵AE•OE=2,CF•OF=|k|,∴|k|=CF•OF=2AE×2OE=4AE×OE=1,∴k=±1.∵点C在第二象限,∴k=﹣1.故答案为:﹣1.【点睛】本题考查了反比例函数图象上点的坐标特征、反比例函数的性质以及相似三角形的判定及性质,解答本题的关键是求出CF•OF=1.解答该题型题目时,巧妙的利用了相似三角形的性质找出对应边的比例,再结合反比例函数图象上点的坐标特征找出结论.17、【分析】根据分式的加减运算法则,先通分,再加减.【详解】解:原式====.故答案为:.【点睛】本题考查了分式的加减运算,解题的关键是掌握运算法则和运算顺序.18、(2,0).【分析】已知条件的解析式是抛物线的顶点式,根据顶点式的坐标特点,直接写出顶点坐标.【详解】解:∵抛物线解析式为y=(x﹣2)2,∴二次函数图象的顶点坐标是(2,0).故答案为(2,0).【点睛】本题的考点是二次函数的性质.方法是根据顶点式的坐标特点写出答案.三、解答题(共78分)19、(1)见解析;(2)45°.【分析】(1)设正方形的边长为a,求出AC的长为a,再求出△ACF与△GCA中∠ACF的两边的比值相等,根据两边对应成比例、夹角相等,两三角形相似,即可判定△ACF与△GCA相似;(2)根据相似三角形的对应角相等可得∠1=∠CAF,再根据三角形的一个外角等于和它不相邻的两个内角的和,∠2+∠CAF=∠ACB=45°,所以∠1+∠2=45°.【详解】设正方形的边长为,则,∴,又∵,∴;解:由得:,∴,∴.【点睛】本题主要考查相似三角形的判定,利用两边对应成比例,夹角相等两三角形相似的判定和相似三角形对应角相等的性质以及三角形的外角性质,求出两三角形的对应边的比值相等是解题关键.20、(1)R-d;(2)BD=ID,理由见解析;(3)见解析;(4).【解析】(1)直接观察可得;(2)由三角形内心的性质可得∠BAD=∠CAD,∠CBI=∠ABI,由圆周角定理可得∠DBC=∠CAD,再根据三角形外角的性质即可求得∠BID=∠DBI,继而可证得BD=ID;(3)应用(1)(2)结论即可;(4)直接代入结论进行计算即可.【详解】(1)∵O、I、N三点共线,∴OI+IN=ON,∴IN=ON﹣OI=R﹣d,故答案为:R﹣d;(2)BD=ID,理由如下:∵点I是△ABC的内心,∴∠BAD=∠CAD,∠CBI=∠ABI,∵∠DBC=∠CAD,∠BID=∠BAD+∠ABI,∠DBI=∠DBC+∠CBI,∴∠BID=∠DBI,∴BD=ID;(3)由(2)知:BD=ID,又,,∴DE·IF=IM·IN,∴,∴∴;(4)由(3)知:,把R=5,r=2代入得:,∵d>0,∴,故答案为:.【点睛】本题是圆综合题,主要考查了三角形外接圆、外心和内切圆、内心,圆周角性质,角平分线定义,三角形外角性质等,综合性较强,熟练掌握相关知识是解题的关键.21、8米【详解】解:如图,过点D作DE⊥AB,垂足为E.在Rt△ADE中,DE=BC=10,∠ADE=33°,tan∠ADE=,∴AE=DE·tan∠ADE≈10×0.65=6.5,∴AB=AE+BE=AE+CD=6.5+1.5=8(m).答:树的高度AB约为8m.22、(18-6)米【分析】延长BA交过点F的水平线与点C,在Rt△BEF中求出BE的长,在Rt△ACF中求出BC的AC的长,即可求出树的高度.【详解】延长BA交过点F的水平线与点C,则四边形BCFE是矩形,∴BC=EF=米,BE=CF,∠EBF=∠BFC=45°,∴BE=EF=米,∴CF=18米,在Rt△ACF中,∵tan∠AFC=,∴AC=,∴AB=(18-)米.【点睛】本题考查解直角三角形的应用-仰角俯角问题,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会用构建方程的思想思考问题.23、(1)1000﹣20(x﹣25);1.(2)30名【分析】(1)求出当人均旅游费为1元时的员工人数,再根据给定的收费标准即可求出结论;(2)由25×1000<210<2×1可得出25<x<2,由总价=单价×数量结合(1)的结论,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【详解】解:(1)∵25+(1000﹣1)÷20=2(人),∴当25<x<2时,人均费用为[1000﹣20(x﹣25)]元,当x≥2时,人均费用为1元.(2)∵25×1000<210<2×1,∴25<x<2.由题意得:x[1000﹣20(x﹣25)]=210,整理得:x2﹣75x+1350=0,解得:x1=30,x2=45(不合题意,舍去).答:该单位这次共有30名员工去旅游.【点睛】本题考查了列代数式以及一元二次方程的应用,解题的关键是:(1)根据数量关系,列出代数式;(2)找准等量关系,正确列出一元二次方程.24、(1)见解析;(2)①AE=2,DE=4;②tan∠DBC=.【分析】(1)①证明△ABE≌△DCE(SAS),得出△ABE∽△DCE即可;②连接AC,由自相似菱形的定义即可得出结论;③由自相似菱形的性质即可得出结论;(2)①由(1)③得△ABE∽△DEA,得出,求出AE=2,DE=4即可;②过E作EM⊥AD于M,过D作DN⊥BC于N,则四边形DMEN是矩形,得出DN=EM,DM=EN,∠M=∠N=90°,设AM=x,则EN=DM=x+4,由勾股定理得出方程,解方程求出AM=1,EN=DM=5,由勾股定理得出DN=EM==,求出BN=7,再由三角函数定义即可得出答案.【详解】解:(1)①正方形是自相似菱形,是真命题;理由如下:如图3所示:∵四边形ABCD是正方形,点E是BC的中点,∴AB=CD,BE=CE,∠ABE=∠DCE=90°,在△ABE和△DCE中,∴△ABE≌△DCE(SAS),∴△ABE∽△DCE,∴正方形是自相似菱形,故答案为:真命题;②有一个内角为60°的菱形是自相似菱形,是假命题;理由如下:如图4所示:连接AC,∵四边形ABCD是菱形,∴AB=BC=CD,AD∥BC,AB∥CD,∵∠B=60°,∴△ABC是等边三角形,∠DCE=120°,∵点E是BC的中点,∴AE⊥BC,∴∠AEB=∠DAE=90°,∴只能△AEB与△DAE相似,∵AB∥CD,∴只能∠B=∠AED,若∠AED=∠B=60°,则∠CED=180°﹣90°﹣60°=30°,∴∠CDE=180°﹣120°﹣30°=30°,∴∠CED=∠CDE,∴CD=CE,不成立,∴有一个内角为60°的菱形不是自相似菱形,故答案为:假命题;③若菱形ABCD是自相似菱形,∠ABC=α(0°<α<90°),E为BC中点,则在△ABE,△AED,△EDC中,相似的三角形只有△ABE与
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 影响我国城乡居民消费现状的因素
- 影响混凝土的塌落度
- 轨道交通 地面装置 交流开关设备 第3部分:测量、控制和保护装置技术条件 编制说明
- 阳春市启贤实验学校八年级上学期语文11月期中考试卷
- 货车延迟过户协议书(2篇)
- 《数学物理方法》第3章测试题
- 南京工业大学浦江学院《商务谈判》2021-2022学年第一学期期末试卷
- 金瑞.林城住宅小区 2#及 1-9 轴地下车库水暖工程施工组织设计
- 对鲜花说课稿
- 南京工业大学浦江学院《汽车电子控制基础》2022-2023学年第一学期期末试卷
- 2024义务教育语文课程标准(2022版)考试试题和答案
- 江西省建设项目环境监理技术指南
- 2024-2030年中国南美白对虾行业市场竞争格局及发展趋势与投资前景研究报告
- 重大事故隐患判定标准课件
- 2023年江苏省公安机关招考录用人民警察简章
- 2024新老物业移交协议
- 在线网课知道智慧《电路(1)(山大)》单元测试考核答案
- 不履行合同义务催告函范文
- 小学二年级上册数学-数角的个数专项练习
- 项目目标成本测算书样表
- 家长会课件:小学四年级数学期中家长会课件
评论
0/150
提交评论