版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023学年高考数学模拟测试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知三棱锥的所有顶点都在球的球面上,平面,,若球的表面积为,则三棱锥的体积的最大值为()A. B. C. D.2.已知为虚数单位,复数,则其共轭复数()A. B. C. D.3.已知向量,则()A.∥ B.⊥ C.∥() D.⊥()4.已知函数是定义在上的偶函数,且在上单调递增,则()A. B.C. D.5.年部分省市将实行“”的新高考模式,即语文、数学、英语三科必选,物理、历史二选一,化学、生物、政治、地理四选二,若甲同学选科没有偏好,且不受其他因素影响,则甲同学同时选择历史和化学的概率为A. B.C. D.6.蒙特卡洛算法是以概率和统计的理论、方法为基础的一种计算方法,将所求解的问题同一定的概率模型相联系;用均匀投点实现统计模拟和抽样,以获得问题的近似解,故又称统计模拟法或统计实验法.现向一边长为的正方形模型内均匀投点,落入阴影部分的概率为,则圆周率()A. B.C. D.7.对某两名高三学生在连续9次数学测试中的成绩(单位:分)进行统计得到折线图,下面是关于这两位同学的数学成绩分析.①甲同学的成绩折线图具有较好的对称性,故平均成绩为130分;②根据甲同学成绩折线图提供的数据进行统计,估计该同学平均成绩在区间110,120内;③乙同学的数学成绩与测试次号具有比较明显的线性相关性,且为正相关;④乙同学连续九次测验成绩每一次均有明显进步.其中正确的个数为()A.4 B.3 C.2 D.18.若,,,点C在AB上,且,设,则的值为()A. B. C. D.9.已知集合A={﹣2,﹣1,0,1,2},B={x|x2﹣4x﹣5<0},则A∩B=()A.{﹣2,﹣1,0} B.{﹣1,0,1,2} C.{﹣1,0,1} D.{0,1,2}10.已知双曲线C:=1(a>0,b>0)的右焦点为F,过原点O作斜率为的直线交C的右支于点A,若|OA|=|OF|,则双曲线的离心率为()A. B. C.2 D.+111.设集合则()A. B. C. D.12.定义在R上的偶函数满足,且在区间上单调递减,已知是锐角三角形的两个内角,则的大小关系是()A. B.C. D.以上情况均有可能二、填空题:本题共4小题,每小题5分,共20分。13.已知直线与圆心为的圆相交于两点,且,则实数的值为_________.14.已知函数,则函数的极大值为___________.15.如图在三棱柱中,,,,点为线段上一动点,则的最小值为________.16.已知函数,则曲线在点处的切线方程为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)若在上是减函数,求实数的最大值;(2)若,求证:.18.(12分)已知函数,.(1)求函数在处的切线方程;(2)当时,证明:对任意恒成立.19.(12分)设,,其中.(1)当时,求的值;(2)对,证明:恒为定值.20.(12分)如图,过点且平行与x轴的直线交椭圆于A、B两点,且.(1)求椭圆的标准方程;(2)过点M且斜率为正的直线交椭圆于段C、D,直线AC、BD分别交直线于点E、F,求证:是定值.21.(12分)已知函数.(1)讨论函数f(x)的极值点的个数;(2)若f(x)有两个极值点证明.22.(10分)如图,点是以为直径的圆上异于、的一点,直角梯形所在平面与圆所在平面垂直,且,.(1)证明:平面;(2)求点到平面的距离.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】
由题意画出图形,设球0得半径为R,AB=x,AC=y,由球0的表面积为20π,可得R2=5,再求出三角形ABC外接圆的半径,利用余弦定理及基本不等式求xy的最大值,代入棱锥体积公式得答案.【题目详解】设球的半径为,,,由,得.如图:设三角形的外心为,连接,,,可得,则.在中,由正弦定理可得:,即,由余弦定理可得,,.则三棱锥的体积的最大值为.故选:.【答案点睛】本题考查三棱锥的外接球、三棱锥的侧面积、体积,基本不等式等基础知识,考查空间想象能力、逻辑思维能力、运算求解能力,考查数学转化思想方法与数形结合的解题思想方法,是中档题.2、B【答案解析】
先根据复数的乘法计算出,然后再根据共轭复数的概念直接写出即可.【题目详解】由,所以其共轭复数.故选:B.【答案点睛】本题考查复数的乘法运算以及共轭复数的概念,难度较易.3、D【答案解析】
由题意利用两个向量坐标形式的运算法则,两个向量平行、垂直的性质,得出结论.【题目详解】∵向量(1,﹣2),(3,﹣1),∴和的坐标对应不成比例,故、不平行,故排除A;显然,•3+2≠0,故、不垂直,故排除B;∴(﹣2,﹣1),显然,和的坐标对应不成比例,故和不平行,故排除C;∴•()=﹣2+2=0,故⊥(),故D正确,故选:D.【答案点睛】本题主要考查两个向量坐标形式的运算,两个向量平行、垂直的性质,属于基础题.4、C【答案解析】
根据题意,由函数的奇偶性可得,,又由,结合函数的单调性分析可得答案.【题目详解】根据题意,函数是定义在上的偶函数,则,,有,又由在上单调递增,则有,故选C.【答案点睛】本题主要考查函数的奇偶性与单调性的综合应用,注意函数奇偶性的应用,属于基础题.5、B【答案解析】
甲同学所有的选择方案共有种,甲同学同时选择历史和化学后,只需在生物、政治、地理三科中再选择一科即可,共有种选择方案,根据古典概型的概率计算公式,可得甲同学同时选择历史和化学的概率,故选B.6、A【答案解析】
计算出黑色部分的面积与总面积的比,即可得解.【题目详解】由,∴.故选:A【答案点睛】本题考查了面积型几何概型的概率的计算,属于基础题.7、C【答案解析】
利用图形,判断折线图平均分以及线性相关性,成绩的比较,说明正误即可.【题目详解】①甲同学的成绩折线图具有较好的对称性,最高130分,平均成绩为低于130分,①错误;②根据甲同学成绩折线图提供的数据进行统计,估计该同学平均成绩在区间[110,120]内,②正确;③乙同学的数学成绩与测试次号具有比较明显的线性相关性,且为正相关,③正确;④乙同学在这连续九次测验中第四次、第七次成绩较上一次成绩有退步,故④不正确.故选:C.【答案点睛】本题考查折线图的应用,线性相关以及平均分的求解,考查转化思想以及计算能力,属于基础题.8、B【答案解析】
利用向量的数量积运算即可算出.【题目详解】解:,,又在上,故选:【答案点睛】本题主要考查了向量的基本运算的应用,向量的基本定理的应用及向量共线定理等知识的综合应用.9、D【答案解析】
解一元二次不等式化简集合,再由集合的交集运算可得选项.【题目详解】因为集合,故选:D.【答案点睛】本题考查集合的交集运算,属于基础题.10、B【答案解析】
以为圆心,以为半径的圆的方程为,联立,可求出点,则,整理计算可得离心率.【题目详解】解:以为圆心,以为半径的圆的方程为,联立,取第一象限的解得,即,则,整理得,则(舍去),,.故选:B.【答案点睛】本题考查双曲线离心率的求解,考查学生的计算能力,是中档题.11、C【答案解析】
直接求交集得到答案.【题目详解】集合,则.故选:.【答案点睛】本题考查了交集运算,属于简单题.12、B【答案解析】
由已知可求得函数的周期,根据周期及偶函数的对称性可求在上的单调性,结合三角函数的性质即可比较.【题目详解】由可得,即函数的周期,因为在区间上单调递减,故函数在区间上单调递减,根据偶函数的对称性可知,在上单调递增,因为,是锐角三角形的两个内角,所以且即,所以即,.故选:.【答案点睛】本题主要考查函数值的大小比较,根据函数奇偶性和单调性之间的关系是解决本题的关键.二、填空题:本题共4小题,每小题5分,共20分。13、0或6【答案解析】
计算得到圆心,半径,根据得到,利用圆心到直线的距离公式解得答案.【题目详解】,即,圆心,半径.,故圆心到直线的距离为,即,故或.故答案为:或.【答案点睛】本题考查了根据直线和圆的位置关系求参数,意在考查学生的计算能力和转化能力。14、【答案解析】
对函数求导,通过赋值,求得,再对函数单调性进行分析,求得极大值.【题目详解】,故解得,,令,解得函数在单调递增,在单调递减,故的极大值为故答案为:.【答案点睛】本题考查函数极值的求解,难点是要通过赋值,求出未知量.15、【答案解析】
把绕着进行旋转,当四点共面时,运用勾股定理即可求得的最小值.【题目详解】将以为轴旋转至与面在一个平面,展开图如图所示,若,,三点共线时最小为,为直角三角形,故答案为:【答案点睛】本题考查了空间几何体的翻折,平面内两点之间线段最短,解直角三角形进行求解,考查了空间想象能力和计算能力,属于中档题.16、【答案解析】
根据导数的几何意义求出切线的斜率,利用点斜式求切线方程.【题目详解】因为,所以,又故切线方程为,整理为,故答案为:【答案点睛】本题主要考查了导数的几何意义,切线方程,属于容易题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)详见解析【答案解析】
(1),在上,因为是减函数,所以恒成立,即恒成立,只需.令,,则,因为,所以.所以在上是增函数,所以,所以,解得.所以实数的最大值为.(2),.令,则,根据题意知,所以在上是增函数.又因为,当从正方向趋近于0时,趋近于,趋近于1,所以,所以存在,使,即,,所以对任意,,即,所以在上是减函数;对任意,,即,所以在上是增函数,所以当时,取得最小值,最小值为.由于,,则,当且仅当,即时取等号,所以当时,.18、(1)(2)见解析【答案解析】
(1)因为,可得,即可求得答案;(2)要证对任意恒成立,即证对任意恒成立.设,,当时,,即可求得答案.【题目详解】(1),,,函数在处的切线方程为.(2)要证对任意恒成立.即证对任意恒成立.设,,当时,,,令,解得,当时,,函数在上单调递减;当时,,函数在上单调递增.,,,当时,对任意恒成立,即当时,对任意恒成立.【答案点睛】本题主要考查了求曲线的切线方程和求证不等式恒成立问题,解题关键是掌握由导数求切线方程的解法和根据导数求证不等式恒成立的方法,考查了分析能力和计算能力,属于难题.19、(1)1(2)1【答案解析】分析:(1)当时可得,可得.(2)先得到关系式,累乘可得,从而可得,即为定值.详解:(1)当时,,又,所以.(2)即,由累乘可得,又,所以.即恒为定值1.点睛:本题考查组合数的有关运算,解题时要注意所给出的的定义,并结合组合数公式求解.由于运算量较大,解题时要注意运算的准确性,避免出现错误.20、(1);(2)证明见解析.【答案解析】
(1)由题意求得的坐标,代入椭圆方程求得,由此求得椭圆的标准方程.(2)设出直线的方程,联立直线的方程和椭圆方程,可得关于的一元二次方程,设出的坐标,分别求出直线与直线的方程,从而求得两点的纵坐标,利用根与系数关系可化简证得为定值.【题目详解】(1)由已知可得:,代入椭圆方程得:椭圆方程为;(2)设直线CD的方程为,代入,得:设,,则有,则AC的方程为,令,得BD的方程为,令,得,证毕.【答案点睛】本题考查椭圆方程的求法,考查直线与椭圆位置关系的应用,考查计算能力,是难题.21、(1)见解析(2)见解析【答案解析】
(1)求得函数的定义域和导函数,对分成三种情况进行分类讨论,判断出的极值点个数.(2)由(1)知,结合韦达定理求得的关系式,由此化简的表达式为,通过构造函数法,结合导数证得,由此证得成立.【题目详解】(1)函数的定义域为得,(i)当时;,因为时,时,,所以是函数的一个极小值点;(ii)若时,若,即时,,在是减函数,无极值点.若,即时,有两根,不妨设当和时,,当时,,是函数的两个极值点,综上所述时,仅有一个极值点;时,无极值点;时,有两个极值点.(2)由(1)知,当且仅当时,有极小值点和极大值点,且是方程的两根,,则所以设,则,又,即,所以所以是上的单调减函数,有两个极值点,则【答案点睛】本小题主要考查利用导数研究函数的极值点,考查利用导数证明不等式,考查分类讨论的数学思想方法,考查化归与转化的数学思想方法,属于中档题.22、(1)见解析;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年微机电测系统行业深度研究分析报告
- 2024-2029年中国合同物流行业市场前瞻与投资战略规划分析报告
- 2025年度羽绒服电商平台入驻合作协议模板2篇
- 2025年凸面放大镜项目投资可行性研究分析报告
- 2020-2025年中国幼儿教材行业市场调研分析及投资战略规划报告
- 2025年车用轮胎项目可行性研究报告
- 二零二五版木托盘租赁与物流行业人才培养合作合同4篇
- 2025年多元激光气项目投资可行性研究分析报告
- 2025年中国禽用疫苗行业投资分析及发展战略研究咨询报告
- 2025年潮牌项目申请报告模板
- 2025-2030年中国陶瓷电容器行业运营状况与发展前景分析报告
- 二零二五年仓储配送中心物业管理与优化升级合同3篇
- 2025届厦门高三1月质检期末联考数学答案
- 音乐作品录制许可
- 江苏省无锡市2023-2024学年高三上学期期终教学质量调研测试语文试题(解析版)
- 拉萨市2025届高三第一次联考(一模)英语试卷(含答案解析)
- 开题报告:AIGC背景下大学英语教学设计重构研究
- 师德标兵先进事迹材料师德标兵个人主要事迹
- 连锁商务酒店述职报告
- 《实践论》(原文)毛泽东
- 第三单元名著导读《红星照耀中国》(公开课一等奖创新教学设计+说课稿)
评论
0/150
提交评论