2022版备战老高考一轮复习文科数学课后限时集训47 立体几何中的综合问题 作业_第1页
2022版备战老高考一轮复习文科数学课后限时集训47 立体几何中的综合问题 作业_第2页
2022版备战老高考一轮复习文科数学课后限时集训47 立体几何中的综合问题 作业_第3页
2022版备战老高考一轮复习文科数学课后限时集训47 立体几何中的综合问题 作业_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

立体几何中的综合问题建议用时:45分钟1.(2019·昆明模拟)如图,四棱柱ABCD­A1B1C1D1中,M是棱DD1上的一点,AA1⊥平面ABCD,AB∥DC,AB⊥AD,AA1=AB=2AD=2DC.(1)若M是DD1的中点,证明:平面AMB⊥平面A1MB1;(2)设四棱锥M­ABB1A1与四棱柱ABCD­A1B1C1D1的体积分别为V1与V2,求eq\f(V1,V2)的值.[解](1)证明:因为AA1⊥平面ABCD,所以AA1⊥AB,又AB⊥AD,AA1∩AD=A,所以BA⊥平面AA1D1D,又MA1⊂平面AA1D1D,所以BA⊥MA1.因为AD=DM,所以∠AMD=45°,同理∠A1MD1=45°,所以AM⊥MA1,又AM∩BA=A,所以MA1⊥平面AMB,又MA1⊂平面A1MB1,故平面AMB⊥平面A1MB1.(2)设AD=1,则四棱锥M­ABB1A1的底面ABB1A1的面积SABB1A1=4,高为AD=1,所以四棱锥M­ABB1A1的体积V1=eq\f(1,3)SABB1A1×AD=eq\f(4,3).四棱柱ABCD­A1B1C1D1的底面ABCD的面积SABCD=eq\f(3,2),高为AA1=2,所以四棱柱ABCD­A1B1C1D1的体积V2=SABCD×AA1=3,所以eq\f(V1,V2)=eq\f(4,9).2.(2019·哈尔滨模拟)如图,等腰梯形ABCD中,AB∥CD,AD=AB=BC=1,CD=2,E为CD的中点,将△ADE沿AE折到△APE的位置.(1)证明:AE⊥PB;(2)当四棱锥P­ABCE的体积最大时,求点C到平面PAB的距离.[解](1)证明:在等腰梯形ABCD中,连接BD,交AE于点O,∵AB∥CE,AB=CE,∴四边形ABCE为平行四边形,∴AE=BC=AD=DE,∴△ADE为等边三角形,∴在等腰梯形ABCD中,∠C=∠ADE=eq\f(π,3),BD⊥BC,∴BD⊥AE.如图,翻折后可得,OP⊥AE,OB⊥AE,又OP⊂平面POB,OB⊂平面POB,OP∩OB=O,∴AE⊥平面POB,∵PB⊂平面POB,∴AE⊥PB.(2)当四棱锥P­ABCE的体积最大时,平面PAE⊥平面ABCE.又平面PAE∩平面ABCE=AE,PO⊂平面PAE,PO⊥AE,∴OP⊥平面ABCE.∵OP=OB=eq\f(\r(3),2),∴PB=eq\f(\r(6),2),∵AP=AB=1,∴S△PAB=eq\f(1,2)×eq\f(\r(6),2)×eq\r(1-\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)×\f(\r(6),2)))eq\s\up20(2))=eq\f(\r(15),8),连接AC,则VP­ABC=eq\f(1,3)OP·S△ABC=eq\f(1,3)×eq\f(\r(3),2)×eq\f(\r(3),4)=eq\f(1,8),设点C到平面PAB的距离为d,∵VP­ABC=VC­PAB=eq\f(1,3)S△PAB·d,∴d=eq\f(3VP­ABC,S△PAB)=eq\f(\f(3,8),\f(\r(15),8))=eq\f(\r(15),5).3.(2019·郑州模拟)如图,四棱锥P­ABCD中,底面ABCD是边长为2的菱形,∠BAD=eq\f(π,3),△PAD是等边三角形,F为AD的中点,PD⊥BF.(1)求证:AD⊥PB;(2)若E在线段BC上,且EC=eq\f(1,4)BC,能否在棱PC上找到一点G,使平面DEG⊥平面ABCD?若存在,求出三棱锥D­CEG的体积;若不存在,请说明理由.[解](1)证明:连接PF,∵△PAD是等边三角形,∴PF⊥AD.∵底面ABCD是菱形,∠BAD=eq\f(π,3),∴BF⊥AD.又PF∩BF=F,∴AD⊥平面BFP,又PB⊂平面BFP,∴AD⊥PB.(2)能在棱PC上找到一点G,使平面DEG⊥平面ABCD.由(1)知AD⊥BF,∵PD⊥BF,AD∩PD=D,∴BF⊥平面PAD.又BF⊂平面ABCD,∴平面ABCD⊥平面PAD,又平面ABCD∩平面PAD=AD,且PF⊥AD,∴PF⊥平面ABCD.连接CF交DE于点H,过H作HG∥PF交PC于G,∴GH⊥平面ABCD.又GH⊂平面DEG,∴平面DEG⊥平面ABCD.∵AD∥BC,∴△DFH∽△ECH,∴eq\f(CH,HF)=eq\f(CE,DF)=eq\f(1,2),∴eq\f(CG,GP)=eq\f(CH,HF)=eq\f(1,2),∴GH=eq\f(1,3)PF=eq\

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论