一次函数模型的应用_第1页
一次函数模型的应用_第2页
一次函数模型的应用_第3页
一次函数模型的应用_第4页
一次函数模型的应用_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精选优质文档-----倾情为你奉上精选优质文档-----倾情为你奉上专心---专注---专业专心---专注---专业精选优质文档-----倾情为你奉上专心---专注---专业一次函数模型的应用例1。某列火车从北京西站开往石家庄,全程277km.火车出发10min开出13km后,以120km/h的速度匀速行驶.试写出火车行驶的总路程S与匀速行驶的时间t之间的关系,并求火车离开北京2h内行驶的路程。解题方法:1.读题,找关键点;2.抽象成数学模型;3.求出数学模型的解;二次函数模型的应用例2某农家旅游公司有客房300间,每间日房租20元,每天都客满.公司欲提高档次,并提高租金.如果每间客房每日增加2元,客房出租数就会减少10间.若不考虑其他因素,旅社将房间租金提高到多少时,每天客房的租金总收入最高?b5E2RGbCb5E2RGbCb5E2RGbC解应用题首先要读懂题意,设计出问题指导学生审题,建立正确的数学模型.同时,培养学生独立解决问题的能力.p1EanqFDp1EanqFDp1EanqFD依题意可列表如下:xy0300×20=60001(300–10×1)(20+2×1)=63802(300–10×2)(20+2×2)=67203(300–10×3)(20+2×3)=70204(300–10×4)(20+2×4)=72805(300–10×5)(20+2×5)=75006(300–10×6)(20+2×6)=76807(300–10×7)(20+2×7)=78208(300–10×8)(20+2×8)=79209(300–10×9)(20+2×9)=798010(300–10×10)(20+2×10)=800011(300–10×11)(20+2×11)=798012(300–10×12)(20+2×12)=792013(300–10×13)(20+2×13)=7820……由上表容易得到,当x=10,即每天租金为40元时,能出租客房200间,此时每天总租金最高,为8000元.再提高租金,总收入就要小于8000元了.DXDiTa9EDXDiTa9EDXDiTa9E解:设客房租金每间提高x个2元,则将有10x间客房空出,客房租金的总收入为y=(20+2x)(300–10x)=–20x2+600x–200x+6000=–20(x2–20x+100–100)+6000=–20(x–10)2+8000.由此得到,当x=10时,ymax=8000.即每间租金为20+10×2=40(元)时,客房租金的总收入最高,每天为8000元RTCrpUDGRTCrpUDGRTCrpUDG实际应用用问题解决的一般步骤:理解问题简化假设数学建模解答模型检验模型评价与应用的进一步深化5PCzVD7H5PCzVD7H5PCzVD7H分段函数的应用例3某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元.销售单价与日均销售量的关系如表所示:jLBHrnAIjLBHrnAIjLBHrnAI销售单价/元6789日均销售量/桶480440400360销售单价/元101112日均销售量/桶320280240请据以上数据作出分析,这个经营部怎样定价才能获得最大利润?解:根据表,销售单价每增加1元,日均销售量就减少40桶.设在进价基础上增加x元后,日均销售利润为y元,而在此情况下的日均销售量就为480–40(x–1)=520–40x(桶)由于x>0且520–40x>0,即0<x<13,于是可得y=(520–40x)x–200=–40x2+520x–200,0<x<13易知,当x=6.5时,y有最大值.所以,只需将销售单价定为11.5元,就可获得最大的利润.指数型函数模型的应用例4人口问题是当今世界各国普遍关注的问题.认识人口数量的变化规律,可以为有效控制人口增长提供依据.早在1798年,英国经济学家马尔萨斯(T.R.Malthus,1766—1834)就提出了自然状态下的人口增长模型:y=y0ert,其中t表示经过的时间,y0表示t=0时的人口数,r表示人口的年平均增长率.下表是1950~1959年我国的人口数据资料:年份19501951195219531954人数/万人5519656300574825879660266年份19551956195719581959人数/万人6145662828645636599467207(1)如果以各年人口增长率的平均值作为我国这一时期的人口增长率(精确到0.0001),用马尔萨斯人口增长模型建立我国在这一时期的具体人口增长模型,并检验所得模型与实际人口数据是否相符;(2)如果按表的增长趋势,大约在哪一年我国的人口达到13亿?形如y=bacx函数为指数型函数,生产生活中以此函数构建模型的实例很多。解(1)设1951~1959年的人口增长率分别为r1,r2,…,r9.由55196(1+r1)=56300,可得1951年的人口增长率r1≈0.0200.同理可得,r2≈0.0210,r3≈0.0229,r4≈0.0250,r5≈0.0197,r6≈0.0223,r7≈0.0276,r8≈0.0222,r9≈0.0184.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论