2021-2022学年山西省晋中市某学校数学高职单招模拟考试(含答案)_第1页
2021-2022学年山西省晋中市某学校数学高职单招模拟考试(含答案)_第2页
2021-2022学年山西省晋中市某学校数学高职单招模拟考试(含答案)_第3页
2021-2022学年山西省晋中市某学校数学高职单招模拟考试(含答案)_第4页
2021-2022学年山西省晋中市某学校数学高职单招模拟考试(含答案)_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022学年山西省晋中市某学校数学高职单招模拟考试(含答案)一、单选题(20题)1.A.B.C.D.

2.设函数f(x)=x2+1,则f(x)是()

A.奇函数B.偶函数C.非奇非偶函数D.既是奇函数又是偶函数3.A.3

B.8C.4.下列函数为偶函数的是A.B.C.5.为A.23B.24C.25D.266.已知等差数列{an}满足a2+a4=4,a3+a5=它的前10项的和Sn()A.138B.135C.95D.237.从200个零件中抽测了其中40个零件的长度,下列说法正确的是()A.总体是200个零件B.个体是每一个零件C.样本是40个零件D.总体是200个零件的长度8.函数y=lg(x+1)的定义域是()A.(-∞,-1)B.(-∞,1)C.(-l,+∞)D.(1,+∞)9.过点A(2,1),B(3,2)直线方程为()A.x+y-1=0B.x-y-1=0C.x+y+l=0D.x-y+l=010.直线x-y=0,被圆x2+y2=1截得的弦长为()A.

B.1

C.4

D.2

11.函数f(x)=的定义域是()A.(0,+∞)B.[0,+∞)C.(0,2)D.R12.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为()A.6B.8C.10D.1213.已知椭圆x2/25+y2/m2=1(m<0)的右焦点为F1(4,0),则m=()A.-4B.-9C.-3D.-514.同时掷两枚质地均匀的硬币,则至少有一枚出现正面的概率是()A.lB.3/4C.1/2D.1/415.A.第一象限角B.第二象限角C.第三象限角D.第四象限角16.若不等式x2+x+c<0的解集是{x|-4<x<3},则c的值等于()A.12B.-12C.11D.-1117.袋中有大小相同的三个白球和两个黑球,从中任取两个球,两球同色的概率为()A.1/5B.2/5C.3/5D.4/518.当时,函数的()A.最大值1,最小值-1

B.最大值1,最小值

C.最大值2,最小值-2

D.最大值2,最小值-1

19.直线L过(-1,2)且与直线2x-3y+5=0垂直,则L的方程是()A.3x+2y-1=0B.3x+2y+7=0C.2x-3y+6=0D.2x-3y+8=020.把6本不同的书分给李明和张强两人,每人3本,不同分法的种类数为()A.

B.

C.

D.

二、填空题(10题)21.已知函数则f(f⑶)=_____.22.23.24.在P(a,3)到直线4x-3y+1=0的距离是4,则a=_____.25.26.27.一个口袋中装有大小相同、质地均匀的两个红球和两个白球,从中任意取出两个,则这两个球颜色相同的概率是______.28.29.己知两点A(-3,4)和B(1,1),则=

。30.某学校共有师生2400人,现用分层抽样的方法,从所有师生中抽取一个容量为160的样本,已知从学生中抽取的人数为150,那么该学校的教师人数是_______.三、计算题(10题)31.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.32.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.33.在等差数列{an}中,前n项和为Sn,且S4=-62,S6=-75,求等差数列{an}的通项公式an.34.解不等式4<|1-3x|<735.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。36.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.37.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.38.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.39.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。40.已知函数y=cos2x+3sin2x,x∈R求:(1)函数的值域;(2)函数的最小正周期。四、证明题(5题)41.42.己知正方体ABCD-A1B1C1D1,证明:直线AC1与直线A1D1所成角的余弦值为.43.己知x∈(1,10),A=lg2x,B=lgx2,证明:A<B.44.己知sin(θ+α)=sin(θ+β),求证:45.己知a=(-1,2),b=(-2,1),证明:cos〈a,b〉=4/5.五、综合题(5题)46.

(1)求该直线l的方程;(2)求圆心该直线上且与两坐标轴相切的圆的标准方程.47.己知椭圆与抛物线y2=4x有共同的焦点F2,过椭圆的左焦点F1作倾斜角为的直线,与椭圆相交于M、N两点.求:(1)直线MN的方程和椭圆的方程;(2)△OMN的面积.48.己知点A(0,2),5(-2,-2).(1)求过A,B两点的直线l的方程;(2)己知点A在椭圆C:上,且(1)中的直线l过椭圆C的左焦点。求椭圆C的标准方程.49.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)50.六、解答题(5题)51.已知椭圆C的对称中心为原点O,焦点在x轴上,左右焦点分别为F1和F2,且|F1F2|=2,点(1,3/2)在该椭圆上.(1)求椭圆C的方程;(2)过F1的直线L与椭圆C相交于A,B两点,以F2为圆心为半径的圆与直线L相切,求△AF2B的面积.52.53.已知公差不为零的等差数列{an}的前4项和为10,且a2,a3,a7成等比数列.(1)求通项公式an;(2)设bn=2an求数列{bn}的前n项和Sn.54.已知函数f(x)=log21+x/1-x.(1)求f(x)的定义域;(2)讨论f(x)的奇偶性;(3)用定义讨论f(x)的单调性.55.如图,在正方体ABCD-A1B1C1D1中,E,F分别为DD1,CC1的中点.求证:(1)AC⊥BD1;(2)AE//平面BFD1.

参考答案

1.B

2.B由题可知,f(x)=f(-x),所以函数是偶函数。

3.A

4.A

5.A

6.C因为(a3+a5)-(a2+a4)=2d=6,所以d=3,a1=-4,所以S10=10a1+10*(10-1)d/2=95.

7.D总体,样本,个体,容量的概念.总体是200个零件的长度,个体是每一零件的长度,样本是40个零件的长度,样本容量是40.

8.C函数的定义.x+1>0所以.x>-1.

9.B直线的两点式方程.点代入验证方程.

10.D直线与圆相交的性质.直线x-y=0过圆心(0,0),故该直线被圆x2+y2=1所截弦长为圆的直径的长度2.

11.Bx是y的算术平方根,因此定义域为B。

12.B分层抽样方法.试题分析:根据题意,由分层抽样知识可得:在高二年级的学生中应抽取的人数为:40×6/30=8

13.C椭圆的定义.由题意知25-m2=16,解得m2=9,又m<0,所以m=-3.

14.B独立事件的概率.同时掷两枚质地均匀的硬币,可能的结果:(正,正),(正,反),(反,正),(反,反)共4种结果,至少有一枚出现正面的结果有3种,所求的概率是3/4

15.B

16.B

17.B

18.D,因为,所以,,,所以最大值为2,最小值为-1。

19.A由于直线与2x-3y+5=0垂直,因此可以设直线方程为3x+2y+k=0,又直线L过点(-1,2),代入直线方程得3*(-1)+2*2+k=0,因此k=-1,所以直线方程为3x+2y-1=0。

20.D21.2e-3.函数值的计算.由题意得,f(3)=㏒3(9-6)=1,所以f(f(3))=f⑴=2e-3.22.外心23.-4/524.-3或7,25.{x|0<x<3}26.-127.1/3古典概型及概率计算公式.两个红球的编号为1,2两个白球的编号为3,4,任取两个的基本事件有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),两球颜色相同的事件有(1,2)和(3,4),故两球颜色相同概率为2/6=1/3

28.-3由于cos(x+π/6)的最小值为-1,所以函数f(x)的最小值为-3.

29.30.150.分层抽样方法.该校教师人数为2400×(160-150)/160=150(人).31.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2

32.33.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23

34.

35.

36.37.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x

-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-438.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为

39.

40.

41.

42.43.证明:考虑对数函数y=lgx的限制知:当x∈(1,10)时,y∈(0,1)A-B=lg2

x-lgx2

=lgx·lgx-2lgx=lgx(lgx-2)∵lgx

(0,1)∴lgx-2<0A-B∴A<B

44.

45.46.解:(1)斜率k

=5/3,设直线l的方程5x-3y+m=0,直线l经过点(0,-8/3),所以m=8,直线l的方程为5x-3y-8=0。(2)设圆心为C(a,b),圆与两坐标轴相切,故a=±b又圆心在直线5x-3y-8=0上,将a=b或a=-b代入直线方程得:a=4或a=1当a=4时,b

=4,此时r=4,圆的方程为(x-4)2

+(y-4)2=16当a=1时,b

=-1,此时r=1,圆的方程为(x-1)2

+(y+1)2=1

47.48.解:(1)直线l过A(0,2),B(-2,-2)两点,根据斜率公式可得斜率因此直线l的方程为y-2=2x即2x-y+2=0⑵由⑴知,直线l的方程为2x-y+2=0,因此直线l与x轴的交点为(-1,0).又直线l过椭圆C的左焦点,故椭圆C的左焦点为(-1,0).设椭圆C的焦距为2c,则有c=1因为点A(0,2)在椭圆C:上所以b=2根据a2=b2+c2,有a=故椭圆C的标准方程为49.

50.

51.以F2为圆心为半径的圆的方程为(x-l)22+y2=2①当直线l⊥x轴时,与圆不相切,不符合题意.②当直线l与x不垂直时,设直线的方程为y=k(x+1),由圆心到直线的距离等

52.53.(1)由题意知54.(1)要使函数f(x)=㏒21+x/1-x有意义,则须1+x/1-x>0解得-1<x<1,所以f(x)的定义域为{x|-1<x<1}.(2)因为f(x)的定义域为{x|-1<x<1},且f(-x)=㏒2(1+x/1-x)-1=-㏒21+x/1-x=-f(x).所以f(x)是定义在(-1,1)上的奇函数.(3)设-1<x1<x2<1,则f(x1)-f(x2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论