吉林省长春市南关区2022-2023学年数学八年级第一学期期末考试模拟试题含解析_第1页
吉林省长春市南关区2022-2023学年数学八年级第一学期期末考试模拟试题含解析_第2页
吉林省长春市南关区2022-2023学年数学八年级第一学期期末考试模拟试题含解析_第3页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.下列图形中,不是轴对称图形的是()A. B. C. D.2.下列运算正确的是()A. B. C. D.3.分式可变形为(

)A.

B.

C.

D.4.分式与的最简公分母是A.ab B.3ab C. D.5.下列计算正确的是()A. B.(x+2)(x—2)=x—2 C.(a+b)=a+b D.(-2a)=4a6.如图,在中,与的平分线交于点,过点作DE∥BC,分别交于点若,则的周长为()A.9 B.15 C.17 D.207.下列计算正确的是()A.a5•a3=a8 B.C. D.(﹣m+n)(m﹣n)=m2﹣n28.若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是()A.﹣5 B.﹣3 C.3 D.19.关于的分式方程有整数解,关于的不等式组无解,所有满足条件的整数的和为()A.2 B.-6 C.-3 D.410.如图,△ABO关于x轴对称,若点A的坐标为(a,b),则点B的坐标为()A.(b,a) B.(﹣a,b) C.(a,﹣b) D.(﹣a,﹣b)二、填空题(每小题3分,共24分)11.一次函数的图象经过点A(-2,-1),且与直线y=2x-1平行,则此函数解析式为_______.12.一次函数的图象不经过_____象限.13.若分式方程的解为正数,则a的取值范围是______________.14.16的平方根是.15.若一个正多边形的一个内角等于135°,那么这个多边形是正_____边形.16.某种病菌的形状为球形,直径约是,用科学记数法表示这个数为______.17.如图,已知在△ABC中,∠B与∠C的平分线交于点P.当∠A=70°时,则∠BPC的度数为________.18.函数y=x+1与y=ax+b的图象如图所示,那么,使y、y的值都大于0的x的取值范围是______.三、解答题(共66分)19.(10分)已知:如图,CE⊥AB,BF⊥AC,CE与BF相交于点D,且BD=CD.求证:点D在∠BAC的平分线上.20.(6分)已知点在轴正半轴上,以为边作等边,,其中是方程的解.(1)求点的坐标.(2)如图1,点在轴正半轴上,以为边在第一象限内作等边,连并延长交轴于点,求的度数.(3)如图2,若点为轴正半轴上一动点,点在点的右边,连,以为边在第一象限内作等边,连并延长交轴于点,当点运动时,的值是否发生变化?若不变,求其值;若变化,求出其变化的范围.21.(6分)如图所示,数轴上表示的对应点分别为,点关于点的对称点为,设点所表示的数为.写出实数的值.求的值.22.(8分)如图△ABC中,AB,AC的垂直平分线分别交BC于D,E,垂足分别是M,N(1)若BC=10,求△ADE的周长.(2)若∠BAC=100°,求∠DAE的度数.23.(8分)如图,点为上一点,,,,求证:.24.(8分)已知∠MAN=120°,点C是∠MAN的平分线AQ上的一个定点,点B,D分别在AN,AM上,连接BD.(发现)(1)如图1,若∠ABC=∠ADC=90°,则∠BCD=°,△CBD是三角形;(探索)(2)如图2,若∠ABC+∠ADC=180°,请判断△CBD的形状,并证明你的结论;(应用)(3)如图3,已知∠EOF=120°,OP平分∠EOF,且OP=1,若点G,H分别在射线OE,OF上,且△PGH为等边三角形,则满足上述条件的△PGH的个数一共有.(只填序号)①2个

②3个

③4个

④4个以上25.(10分)如图,已知.(1)画出关于轴对称的;(2)写出关于轴对称的各顶点的坐标.26.(10分)如图1,的所对边分别是,且,若满足,则称为奇异三角形,例如等边三角形就是奇异三角形.(1)若,判断是否为奇异三角形,并说明理由;(2)若,,求的长;(3)如图2,在奇异三角形中,,点是边上的中点,连结,将分割成2个三角形,其中是奇异三角形,是以为底的等腰三角形,求的长.

参考答案一、选择题(每小题3分,共30分)1、A【分析】根据轴对称图形概念进行解答即可.【详解】解:A、不是轴对称图形,符合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、是轴对称图形,不合题意;故选:A.【点睛】本题考查了轴对称图形的概念,判断轴对称图形的关键是寻找对称轴;轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.2、C【分析】由负整数指数幂的运算法则可以得到答案.【详解】解:所以A,B,D错误;C正确.故选C.【点睛】本题考查的是负整数指数幂的运算,熟悉负整数指数幂的运算法则是关键.3、D【分析】根据分式的性质,可化简变形.【详解】.故答案为D【点睛】考查了分式的基本性质,正确利用分式的基本性质求出是解题关键.4、C【分析】确定最简公分母的方法是:①取各分母系数的最小公倍数;②凡单独出现的字母连同它的指数作为最简公分母的一个因式;③同底数幂取次数最高的,得到的因式的积就是最简公分母.【详解】∵分式与的分母分别是a2b、3ab2,∴最简公分母是3a2b2.故选C.【点睛】本题考查了最简公分母的定义,熟练掌握最简公分母的定义是解答本题的关键.通常取各分母系数的最小公倍数与所有字母因式的最高次幂的积作为公分母,这样的公分母叫做最简公分母.5、D【解析】分别根据同底数幂乘法、积的乘方、平方差公式、完全平方公式,对各选项计算后利用排除法求解.【详解】解:A.,故A选项不正确;B.(x+2)(x—2)=x-4,故B选项不正确;C.(a+b)=a+b+2ab,故C选项不正确;D.(-2a)=4a,故D选项正确.故选:D【点睛】本题考查了整式乘法,熟练掌握运算性质是解题的关键.6、A【分析】由与的平分线交于点,DE∥BC,可得:DB=DO,EO=EC,进而即可求解.【详解】∵BO是∠ABC的平分线,∴∠OBC=∠DBO,∵DEBC,∴∠OBC=∠DOB,∴∠DBO=∠DOB,∴DB=DO,同理:EO=EC,∴的周长=AD+AE+DO+EO=AD+AE+DB+EC=AB+AC=5+4=1.故选A.【点睛】本题主要考查等腰三角形的性质和判定定理,掌握“双平等腰”模型,是解题的关键.7、A【分析】根据整式的运算法则即可求出答案;【详解】A.a5•a3=a8,本选项正确;B.,本选项错误;C.,本选项错误;D.(﹣m+n)(m﹣n)=,本选项错误;故选:A.【点睛】本题主要考查了整式的混合运算,准确计算是解题的关键.8、D【解析】根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此求出m、n的值,代入计算可得.【详解】∵点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,∴1+m=3、1﹣n=2,解得:m=2、n=﹣1,所以m+n=2﹣1=1,故选D.【点睛】本题考查了关于y轴对称的点,熟练掌握关于y轴对称的两点的横坐标互为相反数,纵坐标不变是解题的关键.9、A【分析】求出分式方程的解,由分式方程有整数解,得到整数a的取值;不等式组变形后,根据不等式组无解,确定出a的范围,进而求出a的值,得到所有满足条件的整数a的和.【详解】分式方程去分母得:1-ax+4(x-3)=﹣5,解得:x=,∵x≠3,∴≠3,解得:a≠1.由分式方程的解为整数,且a为整数,得到4-a=±1,±1,±3,±6,解得:a=3,5,1,6,7,1,2,-1.∵a≠1,∴a=-1,1,3,5,6,7,2.解不等式组,得到:.∵不等式组无解,∴,解得:a≤3.∴满足条件的整数a的值为﹣1,1,3,∴整数a之和是-1+1+3=1.故选:A.【点睛】本题考查了分式方程的解以及解一元一次不等式组,熟练掌握运算法则是解答本题的关键.解题时注意:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.10、C【分析】由于△ABO关于x轴对称,所以点B与点A关于x轴对称.根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点:关于x轴对称的点,横坐标相同,纵坐标互为相反数,得出结果.【详解】由题意,可知点B与点A关于x轴对称,又∵点A的坐标为(a,b),∴点B的坐标为(a,−b).故选:C.【点睛】本题考查了平面直角坐标系中关于x轴成轴对称的两点的坐标之间的关系.能够根据题意得出点B与点A关于x轴对称是解题的关键.二、填空题(每小题3分,共24分)11、【分析】设所求的一次函数解析式为y=kx+b,根据两直线平行的问题得到k=2,然后把A点坐标代入y=2x+b求出b的值即可.【详解】解:设所求的一次函数解析式为y=kx+b,

∵直线y=kx+b与直线y=2x-1平行,

∴k=2,

把A(-2,-1)代入y=2x+b得-4+b=-1,解得b=1,

∴所求的一次函数解析式为y=2x+1.

故答案为:y=2x+1.【点睛】本题考查了两直线相交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.12、第三【分析】根据一次函数的图象特点即可得.【详解】一次函数中的,其图象经过第一、二、四象限,不经过第三象限,故答案为:第三.【点睛】本题考查了一次函数的图象,熟练掌握一次函数的图象特点是解题关键.13、a<8,且a≠1【解析】分式方程去分母得:x=2x-8+a,解得:x=8-a,根据题意得:8-a>2,8-a≠1,解得:a<8,且a≠1.故答案为:a<8,且a≠1.【点睛】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,根据分式方程解为正数求出a的范围即可.此题考查了分式方程的解,需注意在任何时候都要考虑分母不为2.14、±1.【详解】由(±1)2=16,可得16的平方根是±1.15、八【解析】360°÷(180°-135°)=816、【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】0.000000102的小数点向右移动7位得到1.02,所以0.000000102用科学记数法表示为,故答案为.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.17、125°【详解】∵△ABC中,∠A=70°,∴∠ABC+∠ACB=180°−∠A=180°−70°=110°∴BP,CP分别为∠ABC与∠ACP的平分线,∴∠2+∠4=(∠ABC+∠ACB)=×110°=55°∴∠P=180°−(∠2+∠4)=180°−55°=125°故答案为125°.18、−1<x<2.【解析】根据x轴上方的图象的y值大于0进行解答.【详解】如图所示,x>−1时,y>0,当x<2时,y>0,∴使y、y的值都大于0的x的取值范围是:−1<x<2.故答案为:−1<x<2.【点睛】此题考查两条直线相交或平行问题,解题关键在于x轴上方的图象的y值大于0三、解答题(共66分)19、证明见解析.【解析】首先根据已知条件易证△BDE≌△CDF(AAS),则DE=DF,再由角平分线性质的逆定理可得D在∠BAC的平分线上.【详解】证明:在△BDE和△CDF中,∠BED=∠CFD=90°,∠BDE=∠CDF,BD=CD∴△BDE≌△CDF(AAS),∴DE=DF,又∵CE⊥AB,BF⊥AC,∴D在∠BAC的平分线上.20、(1);(2);(3)不变化,.【分析】(1)先将分式方程去分母化为整式方程,再求解整式方程,最后检验解是原分式方程的解,即得;(2)先证明,进而可得出,再利用三角形内角和推出,最后利用邻补角的性质即得;(3)先证明,进而得出以及,再根据以上结论以及邻补角对顶角的性质推出,最后根据所对直角边是斜边的一半推出,即得为定值.【详解】(1)∵∴方程两边同时乘以得:解得:检验:当时,∴原分式方程的解为∴点的坐标为.(2)∵、都为等边三角形∴,,∴∴在与中∴∴∵在中,∴∵在中,∴∴∴∵∴.(3)不变化,理由如下:∵、都为等边三角形∴,,∴∴在与中∴∴,∴∵∴∴∵∴∴在中,∴∵A点坐标为∴∴∴为定值9,不变化.【点睛】本题考查等边三角形的性质、全等三角形的性质、含的直角三角形的性质和“手拉手模型”,两个共顶点的顶角相等的等腰三角形构成的图形视作“手拉手模型”,熟练掌握“手拉手模型”及“手拉手模型”的常用结论是解题关键.21、(1);(2)【分析】(1)由点B关于A点的对称点为C,可知A点为B、C两点的中点,根据线段中点的性质求解即可;(2)将x值代入,计算即可求得答案.【详解】解:(1)数轴上的对应点分别为,点关于点的对称点为A点为B、C两点的中点解得:故实数;(2)当时,故.【点睛】本题考查了实数与数轴、代数式求值,解题的关键是利用线段的中点正确求出的值.22、(1)△ADE的周长=1;(2)∠DAE=20°.【分析】(1)由AB、AC的垂直平分线分别交BC于D、E,垂足分别是M、N,根据线段垂直平分线的性质,可得AD=BD,AE=EC,继而可得△ADE的周长等于BC的长;

(2)由∠BAC=10°,可求得∠B+∠C的度数,又由AD=BD,AE=EC,即可求得∠BAD+∠CAE的度数,继而求得答案.【详解】(1)∵AB、AC的垂直平分线分别交BC于D、E,垂足分别是M、N,∴AD=BD,AE=CE,∴△ADE的周长=AD+DE+AE=BD+DE+CE=BC=1.(2)∵∠BAC=10°,∴∠B+∠C=180°﹣∠BAC=80°,∵AD=BD,AE=CE,∴∠BAD=∠B,∠CAE=∠C,∴∠BAD+∠CAE=80°,∴∠DAE=∠BAC﹣(∠BAD+∠CAE)=10°﹣80°=20°.【点睛】此题考查了线段垂直平分线的性质以及等腰三角形的性质.线段垂直平分线上任意一点,到线段两端点的距离相等.23、详见解析【分析】根据同角的补角相等可得∠DBA=∠BEC,然后根据平行线的性质可得∠A=∠C,再利用AAS即可证出△ADB≌△CBE,从而证出结论.【详解】证明:∵,∠DBC+∠DBA=180°∴∠DBA=∠BEC∵∴∠A=∠C在△ADB和△CBE中∴△ADB≌△CBE,∴AD=BC.【点睛】此题考查的是补角的性质、平行线的性质和全等三角形的判定及性质,掌握同角的补角相等、平行线的性质和全等三角形的判定及性质是解决此题的关键.24、(1)60,等边;(2)等边三角形,证明见解析(3)④.【分析】(1)利用四边形的内角和即可得出∠BCD的度数,再利用角平分线的性质定理即可得出CB,即可得出结论;(2)先判断出∠CDE=∠ABC,进而得出△CDE≌△CFB(AAS),得出CD=CB,再利用四边形的内角和即可得出∠BCD=60°即可得出结论;(3)先判断出∠POE=∠POF=60°,先构造出等边三角形,找出特点,即可得出结论.【详解】(1)如图1,连接BD,∵∠ABC=∠ADC=90°,∠MAN=120°,根据四边形的内角和得,∠BCD=360°-(∠ABC+∠ADC+∠MAN)=60°,∵AC是∠MAN的平分线,CD⊥AM.CB⊥AN,∴CD=CB,(角平分线的性质定理),∴△BCD是等边三角形;故答案为60,等边;(2)如图2,同(1)得出,∠BCD=60°(根据三角形的内角和定理),过点C作CE⊥AM于E,CF⊥AN于F,∵AC是∠MAN的平分线,∴CE=CF,∵∠ABC+∠ADC=180°,∠ADC+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论