




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
我的形状最小,那我的内角和最小.我的形状最大,那我的内角和最大.不对,我有一个钝角,所以我的内角和才是最大的.
一天,三类三角形通过对自身的特点,讲出了自己对三角形内角和的理解,请同学们作为小判官给它们评判一下吧.导入新课情境引入锐角三角形测量480720600600+480+720=1800(学生运用学科工具—量角器测量演示)剪拼ABC21(小组合作,讨论剪拼方法。各小组代表板演剪拼过程)三角形的三个内角拼到一起恰好构成一个平角.观测的结果不一定可靠,还需要通过数学知识来说明.从上面的操作过程,你能发现证明的思路吗?还有其他的拼接方法吗?讲授新课三角形的内角和定理的证明一探究:在纸上任意画一个三角形,将它的内角剪下拼合在一起.验证结论三角形三个内角的和等于180°.求证:∠A+∠B+∠C=180°.已知:△ABC.证法1:过点A作l∥BC,∴∠B=∠1.(两直线平行,内错角相等)∠C=∠2.(两直线平行,内错角相等)∵∠2+∠1+∠BAC=180°,∴∠B+∠C+∠BAC=180°.12证法2:延长BC到D,过点C作CE∥BA,∴∠A=∠1.(两直线平行,内错角相等)∠B=∠2.(两直线平行,同位角相等)又∵∠1+∠2+∠ACB=180°,∴∠A+∠B+∠ACB=180°.CBAED12知识要点在这里,为了证明的需要,在原来的图形上添画的线叫做辅助线.在平面几何里,辅助线通常画成虚线.思路总结为了证明三个角的和为180°,转化为一个平角或同旁内角互补等,这种转化思想是数学中的常用方法.作辅助线例1如图,在△ABC中,∠BAC=40°,∠B=75°,AD是△ABC的角平分线,求∠ADB的度数.ABCD解:由∠BAC=40°,AD是△ABC的角平分线,得∠BAD=∠BAC=20°.在△ABD中,∠ADB=180°-∠B-∠BAD=180°-75°-20°=85°.三角形的内角和定理的运用二基本图形由三角形的内角和定理易得∠A+∠B=∠C+∠D.由三角形的内角和定理易得∠1+∠2=∠3+∠4.总结归纳4例3
在△ABC
中,∠A
的度数是∠B
的度数的3倍,∠C
比∠B
大15°,求∠A,∠B,∠C的度数.解:设∠B为x°,则∠A为(3x)°,∠C为(x+
15)°,从而有3x+
x+(x+
15)=
180.解得x=
33.所以3x=
99
,x+
15
=
48.答:∠A,∠B,∠C的度数分别为99°,
33°,48°.几何问题借助方程来解.这是一个重要的数学思想.【变式题】在△ABC中,∠A=∠B=∠ACB,CD是△ABC的高,CE是∠ACB的平分线,求∠DCE的度数.解析:根据已知条件用∠A表示出∠B和∠ACB,利用三角形的内角和求出∠A,再求出∠ACB,∠ACD,最后根据角平分线的定义求出∠ACE即可求得∠DCE的度数.比例关系可考虑用方程思想求角度.解:∵∠A=∠B=∠ACB,设∠A=x,∴∠B=2x,∠ACB=3x.∵∠A+∠B+∠ACB=180°,∴x+2x+3x=180°,得x=30°,∴∠A=30°,∠ACB=90°.∵CD是△ABC的高,∴∠ADC=90°,∴∠ACD=180°-90°-30°=60°.∵CE是∠ACB的平分线,∴∠ACE=×90°=45°,∴∠DCE=∠ACD-∠ACE=60°-45°=15°.②在△ABC中,∠A:∠B:∠C=1:2:3,则△ABC是
_________三角形.
练一练:①在△ABC中,∠A=35°,∠B=43°,则∠
C=.
③在△ABC中,∠A=∠B+10°,∠C=∠A+10°,则∠A=
,∠B=
,∠C=
.102°直角60°50°70°北.AD北.CB.东E例4
如图,C岛在A岛的北偏东50°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西40°方向.从B岛看A,C两岛的视角∠ABC是多少度?从C岛看A、B两岛的视角∠ACB是多少度?三角形的内角和定理也常常用在实际问题中.解:∠CAB=∠BAD-∠CAD=80°-50°=30°.由AD//BE,得∠BAD+∠ABE=180°.所以∠ABE=180°-∠BAD=180°-80°=100°,∠ABC=∠ABE-∠EBC=100°-40°=60°.在△ABC中,∠ACB=180°-∠ABC-∠CAB=180°-60°-30°
=90°,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电子专用设备电路分析与设计考核试卷
- 经纪人如何进行艺人心理辅导考核试卷
- 竹浆在纸质食品包装安全性研究考核试卷
- 橡胶管材在农业喷雾器中的耐化学性能考核试卷
- 电机在家用电器中的角色考核试卷
- 航标器材在海底管线保护中的作用考核试卷
- 纤维素纤维在可穿戴电子器件的应用探索考核试卷
- 口腔清洁用品网络营销策略与实施考核试卷
- 编织工艺品的全球市场发展趋势考核试卷
- 2025年中国亚克力保温浴缸市场调查研究报告
- 肺部感染的护理课件
- 2024年风力发电运维值班员(高级工)理论考试题库-下(判断题部分)
- 2022年信创产业发展基础知识
- 有余数的除法算式300题
- 2024年度医患沟通课件
- 2024年安徽六安市“政录企用”人才引进招聘笔试参考题库含答案解析
- CJJ82-2012 园林绿化工程施工及验收规范
- 水泵维保方案
- 2024年医药卫生考试-医院设备科笔试历年真题荟萃含答案
- 园林植物的识别与应用-草本花卉的识别与应用
- 感谢母爱主题班会(感恩主题班会)课件
评论
0/150
提交评论