版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年湖南省常德市普通高校对口单招数学二模(含答案)学校:________班级:________姓名:________考号:________
一、单选题(10题)1.函数f(x)=log2(3x-1)的定义域为()A.(0,+∞)B.[0,+∞)C.(1,+∞)D.[1,+∞)
2.袋中装有4个大小形状相同的球,其中黑球2个,白球2个,从袋中随机抽取2个球,至少有一个白球的概率为()A.
B.
C.
D.
3.下列函数中是奇函数,且在(-∞,0)减函数的是()A.y=
B.y=1/x
C.y==x2
D.y=x3
4.下列命题正确的是()A.若|a|=|b|则a=bB.若|a|=|b|,则a>bC.若|a|=|b丨则a//bD.若|a|=1则a=1
5.随着互联网的普及,网上购物已经逐渐成为消费时尚,为了解消费者对网上购物的满意情况,某公司随机对4500名网上购物消费者进行了调查(每名消费者限选一种情况回答),统计结果如表:根据表中数据,估计在网上购物的消费者群体中对网上购物“比较满意”或“满意”的概率是()A.7/15B.2/5C.11/15D.13/15
6.设集合{x|-3<2x-1<3},集合B为函数y=lg(x-1)的定义域,则A∩B=()A.(1,2)B.[1,2]C.[1,2)D.(1,2]
7.已知向量a=(sinθ,-2),6=(1,cosθ),且a⊥b,则tanθ的值为()A.2B.-2C.1/2D.-1/2
8.在△ABC中,角A,B,C所对边为a,b,c,“A>B”是a>b的()A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件
9.下列函数中,在其定义域内既是偶函数,又在(-∞,0)上单调递增的函数是()A.f(x)=x2
B.f(x)=2|x|
C.f(x)=log21/|x|
D.f(x)=sin2x
10.已知集合,则等于()A.
B.
C.
D.
二、填空题(5题)11.设A(2,-4),B(0,4),则线段AB的中点坐标为
。
12.等差数列的前n项和_____.
13.i为虚数单位,1/i+1/i3+1/i5+1/i7____.
14.在△ABC中,C=60°,AB=,BC=,那么A=____.
15.不等式的解集为_____.
三、计算题(5题)16.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
17.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。
18.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.
19.解不等式4<|1-3x|<7
20.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.
四、证明题(2题)21.己知x∈(1,10),A=lg2x,B=lgx2,证明:A<B.
22.长、宽、高分别为3,4,5的长方体,沿相邻面对角线截取一个三棱锥(如图).求证:剩下几何体的体积为三棱锥体积的5倍.
五、简答题(2题)23.在三棱锥P-ABC中,已知PA丄BC,PA=a,EC=b,PA,BC的公垂线EF=h,求三棱锥的体积
24.求过点P(2,3)且被两条直线:3x+4y-7=0,:3x+4y+8=0所截得的线段长为的直线方程。
六、综合题(2题)25.己知点A(0,2),5(-2,-2).(1)求过A,B两点的直线l的方程;(2)己知点A在椭圆C:上,且(1)中的直线l过椭圆C的左焦点。求椭圆C的标准方程.
26.
(1)求该直线l的方程;(2)求圆心该直线上且与两坐标轴相切的圆的标准方程.
参考答案
1.A函数的定义.由3x-1>0,得3x>1,即3x>30,∴x>0.
2.D从中随即取出2个球,每个球被取到的可能性相同,因此所有的取法为,所取出的的2个球至少有1个白球,所有的取法为,由古典概型公式可知P=5/6.
3.B函数奇偶性,增减性的判断.A是非奇非偶函数;C是偶函数;D是增函数.
4.Ca、b长度相等但是方向不确定,故A不正确;向量无法比较大小,故B不正确;a两个向量相同,故C正确;左边是向量,右边是数量,等式不成立,D不正确。
5.C古典概型的概率公式.由题意,n=4500-200-2100-1000=1200.所以对网上购物“比较满意”或“满意”的人数为1200+2100=3300,由古典概型概率公式可得对网上购物“比较满意”或“满意”的概率为3300/4500=11/15.
6.D不等式的计算,集合的运算.由题知A=[-1,2],B=(1,+∞),∴A∩B=(1,2]
7.A平面向量的线性运算∵a⊥b,∴b=sinθ-2cosθ=0,∴tanθ=2.
8.C正弦定理的应用,充要条件的判断.大边对大角,大角也就对应大边.
9.C函数的奇偶性,单调性.函数f(x)=x2是偶函数,但在区间(-∞,0)上单调递减,不合题意;函数f(x)=2|x|是偶函数,但在区间(-∞,0)上单调递减,不合题意;函数f(x)=㏒21/|x|是偶函数,且在区间(-∞,0)上单调递增,符合题意;函数f(x)=sin2x是奇函数,不合题意.
10.B由函数的换算性质可知,f-1(x)=-1/x.
11.(1,0)由题可知,线段AB的中点坐标为x=(2+0)/2=1,y=(-4+4)/2=0。
12.2n,
13.0.复数的运算.1/i+1/i3+1/i5+1/i7=-i+i-i+i=0
14.45°.解三角形的正弦定理.由正弦定理知BC/sinA=AB/sinC,即/sinA=/sin60°所以sinA=/2,又由题知BC<AB,得A<C,所以A=45°.
15.-1<X<4,
16.
17.
18.
19.
20.
21.证明:考虑对数函数y=lgx的限制知
:当x∈(1,10)时,y∈(0,1)A-B=lg2
x-lgx2
=lgx·lgx-2lgx=lgx(lgx-2)∵lgx∈(0,1)∴lgx-2<0A-B<0∴A<B
22.证明:根据该几何体的特征,可知所剩的几何体的体积为长方体的体积减去所截的三棱锥的体积,即
23.
24.x-7y+19=0或7x+y-17=0
25.解:(1)直线l过A(0,2),B(-2,-2)两点,根据斜率公式可得斜率因此直线l的方程为y-2=2x即2x-y+2=0⑵由⑴知,直线l的方程为2x-y+2=0,因此直线l与x轴的交点为(-1,0).又直线l过椭圆C的左焦点,故椭圆C的左焦点为(-1,0).设椭圆C的焦距为2c,则有c=1因为点A(0,2)在椭圆C:上所以b=2根据a2=b2+c2,有a=故椭圆C的标准方程为
26.解:(1)斜率k=5/3,设直线l的方程5x-3y+m=0,直线l经过点(0,-8/3),所以m=8,直线l的方程为5x-3y-8=0。(2)设圆心为C(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 44619-2024福寿螺检疫鉴定方法
- 家用水龙头过滤器产品供应链分析
- 包装用纸袋产品供应链分析
- 工商管理辅助行业相关项目经营管理报告
- 含药喉咙喷剂产品供应链分析
- 发行预付费代金券行业相关项目经营管理报告
- 刷子用貉毛产业链招商引资的调研报告
- 年金保险行业相关项目经营管理报告
- 虚拟现实游戏用耳机项目运营指导方案
- 安排和举办青年足球训练项目行业经营分析报告
- 2024年国家公务员考试《行测》真题卷(行政执法)答案和解析
- 公共基础知识1000题题库
- 生猪屠宰兽医卫生检验人员理论考试题库及答案
- 2024年北京公交集团第四客运分公司招聘笔试参考题库附带答案详解
- 《陆上风电场工程设计概算编制规定及费用标准》(NB-T 31011-2019)
- 江苏省专业技术人员年度考核表
- 脑淀粉样脑血管病ppt课件
- 精品资料(2021-2022年收藏)南宁市茧丝绸产业发展方案
- 《无菌导尿术》PPT课件.ppt
- 接触网基础知识
- 计量标准技术报告电子天平检定装置
评论
0/150
提交评论