版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,在等边三角形ABC中,点E为AC边上的中点,AD是BC边上的中线,P是AD上的动点,若AD=3,则EP+CP的最小值是为()A.3 B.4 C.6 D.102.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB,交BC于点D,DE⊥AB于点E,且AB=6cm,则△DEB的周长为()A.4cm B.6cm C.8cm D.以上都不对3.已知等边三角形ABC.如图,(1)分别以点A,B为圆心,大于的AB长为半径作弧,两弧相交于M,N两点;(2)作直线MN交AB于点D;(2)分别以点A,C为圆心,大于AC的长为半径作弧,两弧相交于H,L两点;(3)作直线HL交AC于点E;(4)直线MN与直线HL相交于点O;(5)连接OA,OB,OC.根据以上作图过程及所作图形,下列结论:①OB=2OE;②AB=2OA;③OA=OB=OC;④∠DOE=120°,正确的是()A.①②③④ B.①③④ C.①②③ D.③④4.如图,分别以Rt△ABC的直角边AC,斜边AB为边向外作等边三角形△ACD和△ABE,F为AB的中点,连接DF,EF,∠ACB=90°,∠ABC=30°.则以下4个结论:①AC⊥DF;②四边形BCDF为平行四边形;③DA+DF=BE;④其中,正确的是()A.只有①② B.只有①②③ C.只有③④ D.①②③④5.小马虎在下面的计算中只做对了一道题,他做对的题目是()A. B. C. D.6.如图,在中,的垂直平分线交于点,连接,若,,则的度数为()A.90° B.95° C.105° D.115°7.某校对1200名女生的身高进行了测量,身高在,这一小组的频率为,则该组的人数为()A.150人 B.300人 C.600人 D.900人8.下面各组数据中是勾股数的是()A.0.3,0.4,0.5 B.5,12,13C.1,4,9 D.5,11,129.下列各点在函数y=1-2x的图象上的是()A. B. C. D.10.如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD上一个动点,则下列线段的长度等于BP+EP最小值的是()A.BC B.AC C.AD D.CE二、填空题(每小题3分,共24分)11.已知关于的分式方程的解是非负数,则的取值范围是__________.12.如图,中,,,把沿翻折,使点落在边上的点处,且,那么的度数为________.13.如图,在长方形ABCD中,按以下步骤作图:①分别以点A和C为圆心,以大于AC的长为半径作弧,两弧相交于点M和N;②作直线MN交CD于点E.若DE=3,CE=5,则AD的长为__________.14.有一种球状细菌,直径约为,那么用科学记数法表示为__________.15.如图,的面积为,作的中线,取的中点,连接得到第一个三角形,作中线,取的中点,连接,得到第二个三角形……重复这样的操作,则2019个三角形的面积为_________.16.如图,在平面直角坐标系中,OA=OB=,AB=.若点A坐标为(1,2),则点B的坐标为_____.17.当取________时,分式无意义;18.已知,则的值等于________.三、解答题(共66分)19.(10分)如图,A,B分别为CD,CE的中点,AE⊥CD于点A,BD⊥CE于点B.求∠AEC的度数.20.(6分)先化简:÷(),再从﹣3<x<2的范围内选取一个你最喜欢的整数代入,求值.21.(6分)已知:如图,AE=CF,AD∥BC,AD=CB.求证:∠B=∠D.22.(8分)已知某种商品去年售价为每件元,可售出件.今年涨价成(成),则售出的数量减少成(是正数).试问:如果涨价成价格,营业额将达到,求.23.(8分)如图,在中,,,线段与关于直线对称,是线段与直线的交点.(1)若,求证:是等腰直角三角形;(2)连,求证:.24.(8分)探究与发现:如图1所示的图形,像我们常见的学习用品—圆规.我们不妨把这样图形叫做“规形图”.(1)观察“规形图”,试探究与、、之间的关系,并说明理由;(2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺放置在上,使三角尺的两条直角边、恰好经过点、,,则________________;②如图3,平分,平分,若,,求的度数;③如图4,,的等分线相交于点,,,,若,,求的度数.25.(10分)我们定义:两边平方和等于第三边平方的2倍的三角形叫做奇异三角形.例如:某三角形三边长分别是2,4,,因为,所以这个三角形是奇异三角形.(1)根据定义:“等边三角形是奇异三角形”这个命题是______命题(填“真”或“假命题”);(2)在中,,,,,且,若是奇异三角形,求;(3)如图,以为斜边分别在的两侧作直角三角形,且,若四边形内存在点,使得,.①求证:是奇异三角形;②当是直角三角形时,求的度数.26.(10分)在平面直角坐标系xOy中,直线l1:y=k1x+6与x轴、y轴分别交于A、B两点,且OB=OA,直线l2:y=k2x+b经过点C(,1),与x轴、y轴、直线AB分别交于点E、F、D三点.(1)求直线l1的解析式;(2)如图1,连接CB,当CD⊥AB时,求点D的坐标和△BCD的面积;(3)如图2,当点D在直线AB上运动时,在坐标轴上是否存在点Q,使△QCD是以CD为底边的等腰直角三角形?若存在,请直接写出点Q的坐标,若不存在,请说明理由.
参考答案一、选择题(每小题3分,共30分)1、A【分析】先连接PB,再根据PB=PC,将EP+CP转化为EP+BP,最后根据两点之间线段最短,求得BE的长,即为EP+CP的最小值.【详解】连接PB,如图所示:∵等边△ABC中,AD是BC边上的中线∴AD是BC边上的高线,即AD垂直平分BC∴PB=PC,当B、P、E三点共线时,EP+CP=EP+PB=BE,∵等边△ABC中,E是AC边的中点,∴AD=BE=3,∴EP+CP的最小值为3,故选:A.【点睛】本题主要考查了等边三角形的轴对称性质,解题时注意,最小值问题一般需要考虑两点之间线段最短或垂线段最短等结论.2、B【分析】根据角平分线上的点到角的两边的距离相等可得CD=DE,根据全等三角形对应边相等可得AC=AE,求出△DEB的周长=AB.【详解】解:∵AD平分∠CAB,∠C=90°,DE⊥AB,∴CD=DE,在△ACD和△AED中,,∴△ACD≌△AED(HL),∴AC=AE,∴可得△DEB的周长=BD+DE+BE,=BD+CD+BE,=BC+BE,=AC+BE,=AE+BE,=AB,∵AB=6cm,∴△DEB的周长为6cm.故选:B.【点睛】角平分线上的点到角的两边的距离相等与根据HL证明全等,等量代换理清逻辑。3、B【分析】根据等边三角形的性质,三角形的外心,三角形的内心的性质一一判断即可.【详解】解:由作图可知,点O是△ABC的外心,∵△ABC是等边三角形,∴点O是△ABC的外心也是内心,∴OB=2OE,OA=OB=OC,∵∠BAC=60°,∠ADO=∠AEO=90°,∴∠DOE=180°﹣60°=120°,故①③④正确,故选:B.【点睛】本题考查作图−复杂作图,线段的垂直平分线的性质,等边三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4、A【分析】根据平行四边形的判定定理判断②,根据平行四边形的性质和平行线的性质判断①,根据三角形三边关系判断③,根据等边三角形的性质分别求出△ACD、△ACB、△ABE的面积,计算即可判断④.【详解】∵∠ACB=90°,∠ABC=30°,
∴∠BAC=60°,AC=AB,
∵△ACD是等边三角形,
∴∠ACD=60°,
∴∠ACD=∠BAC,
∴CD∥AB,
∵F为AB的中点,
∴BF=AB,
∴BF∥CD,CD=BF,
∴四边形BCDF为平行四边形,②正确;
∵四边形BCDF为平行四边形,
∴DF∥BC,又∠ACB=90°,
∴AC⊥DF,①正确;
∵DA=CA,DF=BC,AB=BE,BC+AC>AB
∴DA+DF>BE,③错误;
设AC=x,则AB=2x,
S△ACD=,④错误,
故选:A.【点睛】此题考查平行四边形的判定和性质、等边三角形的性质,掌握一组对边平行且相等的四边形是平行四边形、等边三角形的有关计算是解题的关键.5、D【分析】根据分式的运算法则逐一计算即可得答案.【详解】A.,故该选项计算错误,不符合题意,B.,故该选项计算错误,不符合题意,C.,故该选项计算错误,不符合题意,D.,故该选项计算正确,符合题意,故选:D.【点睛】本题考查分式的运算,熟练掌握运算法则是解题关键.6、C【分析】根据垂直平分线的性质可得DA=DB,根据等边对等角可得∠DAB=∠B=25°,然后根据三角形外角的性质即可求出∠ADC,再根据等边对等角可得∠ADC=∠C=50°,利用三角形的内角和定理即可求出.【详解】解:∵DE垂直平分AB∴DA=DB∴∠DAB=∠B=25°∴∠ADC=∠DAB+∠B=50°∵∴∠ADC=∠C=50°∴∠BAC=180°-∠B-∠C=105°故选C.【点睛】此题考查的是垂直平分线的性质、等腰三角形的性质、三角形外角的性质和三角形内角和定理,掌握垂直平分线的性质、等边对等角、三角形外角的性质和三角形内角和定理是解决此题的关键.7、B【解析】根据频率=频数÷总数,得频数=总数×频率.【详解】解:根据题意,得
该组的人数为1200×0.25=300(人).
故选:B.【点睛】本题考查了频率的计算公式,理解公式.频率=能够灵活运用是关键.8、B【解析】根据勾股数的定义进行解答即可.【详解】A、∵0.3,0.4,0.5是小数,∴不是勾股数,故本选项错误;B、∵52+122=169=132,∴是勾股数,故本选项正确;C、∵12+42≠92,∴不是勾股数,故本选项错误;D、∵52+112≠122,∴不是勾股数,故本选项错误.故选:B.【点睛】本题考查勾股数,解题的关键是掌握勾股数的定义.9、C【解析】把各点的横坐标代入所给函数解析式,看所得函数值是否和点的纵坐标相等即可.【详解】解:A、当x=0时,y=1-2×0=1≠2,不符合题意;B、当x=1时,y=1-2×1=-1≠0,不符合题意;C、当x=1时,y=1-2×1=-1,符合题意;D、当x=2时,y=1-2×2=-3≠-1,不符合题意.故选C.【点睛】本题考查了一次函数图象上点的坐标特征;用到的知识点为:一次函数解析式上点的横纵坐标适合该函数解析式.10、D【分析】如图连接PC,只要证明PB=PC,即可推出PB+PE=PC+PE,由PE+PC≥CE,推出P、C、E共线时,PB+PE的值最小,最小值为CE.【详解】如图连接PC,∵AB=AC,BD=CD,∴AD⊥BC,∴PB=PC,∴PB+PE=PC+PE,∵PE+PC⩾CE,∴P、C、E共线时,PB+PE的值最小,最小值为CE,所以答案为D选项.【点睛】本题主要考查了三角形中线段的最小值问题,熟练掌握相关方法是解题关键.二、填空题(每小题3分,共24分)11、且【分析】解出分式方程,根据解是非负数求出m的取值范围,再根据x=1是分式方程的增根,求出此时m的值,得到答案.【详解】去分母得,m−1=x−1,解得x=m−2,由题意得,m−2≥0,解得,m≥2,x=1是分式方程的增根,所有当x=1时,方程无解,即m≠1,所以m的取值范围是m≥2且m≠1.故答案为:m≥2且m≠1.【点睛】本题考查的是分式方程的解法和一元一次不等式的解法,理解分式方程的增根的判断方法是解题的关键.12、【解析】根据等腰三角形的性质,求得∠C,然后利用三角形内角和求得∠FEC,再根据邻补角的定义求得∠AEF,根据折叠的性质可得∠AED=∠FED=∠AEF,在△ADE中利用三角形内角和定理即可求解.【详解】解:∵中,,,∴∠B=∠C=45°又∵∴∠FEC=180°-∠EFC-∠C=180°-15°-45°=120°,∴∠AEF=180°-∠FEC=60°又∵∠AED=∠FED=∠AEF=30°,∠A=90°,∴∠ADE=180°-∠AED-∠A=180°-30°-90°=60°.故答案为:60°.【点睛】本题考查了等腰三角形等边对等角,三角形内角和的应用,折叠的性质,找出图形中相等的角和相等的线段是关键.13、1【分析】连接AE,如图,利用基本作图得到MN垂直平分AC,则EA=EC=3,然后利用勾股定理计算出AD即可.【详解】连接AE,如图,由作法得MN垂直平分AC,∴EA=EC=5,在Rt△ADE中,AD=,故答案为1.【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).14、【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:=,故答案为:.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.15、【分析】根据题意可知是△ABC的中位线,可得△ABC∽,相似比为2:1,故S==,同理可得S==×=,进而得到三角形的面积.【详解】∵是的中点,是的中线∴是△ABC的中位线∴△ABC∽,相似比为2:1,∴S==,依题意得是的中位线同理可得S=,则S==,…∴S=故答案为:.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知中位线的性质及相似三角形的性质.16、(﹣2,1).【分析】作BN⊥x轴,AM⊥x轴,根据题意易证得△BNO≌△OMA,再根据全等三角形的性质可得NB=OM,NO=AM,又已知A点的坐标,即可得B点的坐标.【详解】解:作BN⊥x轴,AM⊥x轴,∵OA=OB=,AB=,∴AO2+OB2=AB2,∴∠BOA=90°,∴∠BON+∠AOM=90°,∵∠BON+∠NBO=90°,∴∠AOM=∠NBO,∵∠AOM=∠NBO,∠BNO=∠AMO,BO=OA,∴△BNO≌△OMA,∴NB=OM,NO=AM,∵点A的坐标为(1,2),∴点B的坐标为(-2,1).故答案为(-2,1).【点睛】本题考查了全等三角形的判定与性质,解题的关键是熟练的掌握全等三角形的判定与性质.17、1【分析】令x-1=0即可得出答案.【详解】∵分式无意义∴x-1=0解得x=1故答案为1.【点睛】本题考查的是分式无意义:分母等于0.18、-5【分析】由得到,整体代入求值即可得到答案.【详解】解:,故答案为:【点睛】本题考查的是分式的求值,掌握整体代入方法求分式的值是解题的关键.三、解答题(共66分)19、30°【分析】试题分析:连接DE,由A,B分别为CD,CE的中点,AE⊥CD于点A,BD⊥CE于点B可证明得到△CDE为等边三角形,再利用直角三角形两锐角互余即可得.【详解】试题解析:连接DE,∵A,B分别为CD,CE的中点,AE⊥CD于点A,BD⊥CE于点B,∴CD=CE=DE,∴△CDE为等边三角形,∴∠C=60°,∴∠AEC=90°-∠C=30°.20、;取x=-2原式=【分析】首先将括号里面通分,进而将能因式分解的分子与分母因式分解,即可化简,再利用分式有意的条件得出即可.【详解】解:原式====∵∴取x=-2∴原式=【点睛】此题主要考查了分式的化简求值,在分式运算的过程中,要注意对分式的分子、分母进行因式分解,然后简化运算,再运用四则运算法则进行求值计算.21、见解析【分析】根据两直线平行内错角相等即可得出∠A=∠C,再结合题意,根据全等三角形的判定(SAS)即可判断出△ADF≌△CBE,根据全等三角形的的性质得出结论.【详解】证明:∵AD∥CB,∴∠A=∠C,∵AE=CF,∴AE﹣EF=CF﹣EF,即AF=CE,在△ADF和△CBE中,∵,∴△ADF≌△CBE(SAS),∴∠B=∠D.【点睛】本题考查平行线的性质、全等三角形的判定(SAS)和性质,解题的关键是掌握平行线的性质、全等三角形的判定(SAS)和性质.22、【分析】今年该商品售价为每件,售出的数量是,然后根据题意列方程求解即可.【详解】解:由题意知今年该商品售价为每件,售出的数量是,则销售额是,如果售价每件涨价成,营业额将达到,则可列,化简得,∴(5m-4)2=0,∴5m=4,∴.【点睛】本题考查了方程的应用,完全平方公式,正确列出方程是解答本题的关键.23、(1)证明见解析;(2)证明见解析.【分析】(1)首先证明是正三角形得,再根据对称性得,AC=AD,从而可得结论;(2)在上取点,使,连,证明≌,再证明是正三角形得,从而可得结论.【详解】在中,,是正三角形,(1)线段与关于直线对称,,是等腰直角三角形(2)在上取点,使,连线段与关于直线对称,∴=∠ACE在与中∴≌∴∴在中,,是正三角形,.【点睛】本题考查的是全等三角形的判定和性质、轴对称的性质、等腰三角形的性质、等边三角形的判定与性质,掌握全等三角形的判定定理和性质定理是解题的关键.24、(1)∠BDC=∠A+∠B+∠C;详见解析(2)①50°②85°③50°【分析】(1)首先连接AD并延长,然后根据外角的性质,即可判断出∠BDC=∠A+∠B+∠C.
(2)①由(1)可得∠ABX+∠ACX+∠A=∠BXC,然后根据∠A=40°,∠BXC=90°,即可求出∠ABX+∠ACX的值.
②由(1)可得∠DBE=∠DAE+∠ADB+∠AEB,再根据∠DAE=40°,∠DBE=130°,求出∠ADB+∠AEB的值;然后根据∠DCE=(∠ADB+∠AEB)+∠DAE,即可求出∠DCE的度数.③设,结合已知可得,,再根据(1)可得,,即可判断出∠A的度数.【详解】解:(1)∠BDC=∠A+∠B+∠C,理由如下:如图(1),连接AD并延长.图1根据外角的性质,可得∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD,又∵∠BDC=∠BDF+∠CDF,∠BAC=∠BAD+∠CAD,∴∠BDC=∠A+∠B+∠C;(2)①由(1)可得∠ABX+∠ACX+∠A=∠BXC,∵∠A=40°,∠BXC=90°,∴∠ABX+∠ACX=90°-40°=50°,故答案为50°;②由(1)可得∠DBE=∠DAE+∠ADB+∠AEB,∴∠ADB+∠AEB=∠DBE-∠DAE=130°-40°=90°,∴(∠ADB+∠AEB)=90°÷2=45°,∴∠DCE=(∠ADB+∠AEB)+∠DAE=45°+40°=85°;③设,.则,,则,解得所以即的度数为50°.【点睛】此题还考查了三角形的外角的性质,要熟练掌握,解答此题的关键是要明确:三角形的外角等于和它不相邻的两个内角的和.25、(1)真;(2);(3)①证明见解析;②或.【分析】(1)设等边三角形的边长为a,则a2+a2=2a2,即可得出结论;
(2)由勾股定理得出a2+b2=c2①,由Rt△ABC是奇异三角形,且b>a,得出a2+c2=2b2②,由①②得出b=a,c=a,即可得出结论;
(3)①由勾股定理得出AC2+BC2=AB2,AD2+BD2=AB2,由已知得出2AD2=AB2,AC2+CE2=2AE2,即可得出△ACE是奇异三角形;
②由△ACE是奇异三角形,得出AC2+CE2=2AE2,分两种情况,由直角三角形和奇异三角形的性质即可得出答案.【详解】(1)解:“等边三角形是奇异三角形”这个命题是真命题,理由如下:设等边三角形的一边为,则,∴符合奇异三角形”的定义.(2)解:∵,则①,∵是奇异三角形,且,∴②,由①②得:,,∴.(3)①证明:∵,∴,,∵,∴,∵,,∴,∴是奇异三角形.②由①可得是奇异三角形,∴,当是直角三角形时,由(2)得:或,当时,,即,∵,∴,∵,,∴,∴.当时,,即,∵,∴°,∵,,∴,∴,∴或.【点睛】本题是四边形综合题目,考查奇异三角形的判定与性质、等边三角形的性质、直角三角形的性质、勾股定理等知识;熟练掌握奇异三角形的定义、等边三角形的性质和勾股定理是解题的关键.26、(1)y=x+6;(2)D(﹣,3),S△BCD=4;(3)存在点Q,使△QCD是以CD为底边的等腰直角三角形,点Q的坐标是(0,±2)或(6﹣4,0)或(﹣4﹣6,0)【分析】(1)根据待定系数法可得直线l1的解析式;(2)如图1,过C作CH⊥x轴于H,求点E的坐标,利用C和E两点的坐标求直线l2的解析式,与直线l1列方程组可得点D的坐标,利用面积和可得△BCD的面积;(3)分四种情况:在x轴和y轴上,证明△DMQ≌△QNC(AAS),得DM=QN,QM=CN,设D(m,m+6)(m<0),表示点Q的坐标,根据OQ的长列方程可得m的值,从而得到结论.【详解】解:(1)y=k1x+6,当x=0时,y=6,∴OB=6,∵OB=OA,∴OA=2,∴A(﹣2,0),把A(﹣2,0)代入:y=k1x+6中得:﹣2k1+6=0,k1=,∴直线l1的解析式为:y=x+6;(2)如图1,过C作C
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国翻车机系统设备数据监测研究报告
- 2025年重庆建筑安全员-C证考试(专职安全员)题库附答案
- 二零二五年度企业内部能源管理承包协议3篇
- 2024至2030年中国本色嫩肤面膜数据监测研究报告
- 2025年度艺人经纪合同双方3篇
- 2025年务工人员劳动合同争议解决机制研究与应用3篇
- 2024至2030年中国加热溶剂型反光标线涂料数据监测研究报告
- 【同步备课】2020年高中物理课时训练人教版选修3-5-18.3氢原子光谱
- 二零二五DJ音乐版权海外发行代理合同3篇
- 2025年协议离婚财产分割纠纷解决技巧与案例3篇
- ncv65系列安装金盘5发版说明
- 国能神皖安庆发电有限责任公司厂内108MW-108MWh储能项目环境影响报告表
- 华中师大《线性代数》练习测试题库及答案4096
- 铁路试验检测技术
- 2023-2024人教版小学2二年级数学下册(全册)教案【新教材】
- 小学奥数基础教程(附练习题和答案)
- 九年级语文上学期教学工作总结
- TWSJD 002-2019 医用清洗剂卫生要求
- GB/T 7324-2010通用锂基润滑脂
- 杭州地铁一号线工程某盾构区间实施施工组织设计
- 带式输送机设计
评论
0/150
提交评论