2022年铜川市重点中学八年级数学第一学期期末经典试题含解析_第1页
2022年铜川市重点中学八年级数学第一学期期末经典试题含解析_第2页
2022年铜川市重点中学八年级数学第一学期期末经典试题含解析_第3页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.一种细胞的直径约为0.000052米,将0.000052用科学记数法表示为()A. B. C. D.2.下列各式中的变形,错误的是(()A. B. C. D.3.已知则的大小关系是()A. B. C. D.4.某厂计划x天生产120个零件,由于改进技术,每天比计划多生产3个,因此比原计划提前2天完成,列出的正确方程为()A. B. C. D.5.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A=().A.60° B.80° C.70° D.50°6.若中国队参加国际数学奥林匹克的参赛选手比赛成绩的方差计算公式为:,下列说法错误的是()A.我国一共派出了六名选手 B.我国参赛选手的平均成绩为38分C.参赛选手的中位数为38 D.由公式可知我国参赛选手比赛成绩团体总分为228分7.一个直角三角形的两条边长分别为3cm,4cm,则该三角形的第三条边长为()A.7cm B.5cm C.7cm或5cm D.5cm或8.若方程组的解中x与y的值相等,则k为()A.4 B.3 C.2 D.19.如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A等于A.60° B.70° C.80° D.90°10.2-3的倒数是()A.8 B.-8 C. D.-11.若一组数据2,0,3,4,6,x的众数为4,则这组数据中位数是()A.0 B.2 C.3 D.3.512.已知多边形的每个内角都是108°,则这个多边形是()A.五边形 B.七边形 C.九边形 D.不能确定二、填空题(每题4分,共24分)13.一次函数y=kx+b的图象如图所示,则不等式0≤kx+b<5的解集为.14.已知,则_______________.15.若代数式的值为零,则x的取值应为_____.16.如图,在中,,点、在的延长线上,是上一点,且,是上一点,且.若,则的大小为__________度.17.函数中自变量x的取值范围是______.18.如图,等腰△ABC中,AB=AC,∠BAC=120°,AE⊥AC,DE垂直平分AB于D,若DE=2,则EC=_____.三、解答题(共78分)19.(8分)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,△ADC和△CEB全等吗?请说明理由;(2)聪明的小亮发现,当直线MN绕点C旋转到图1的位置时,可得DE=AD+BE,请你说明其中的理由;(3)小亮将直线MN绕点C旋转到图2的位置,发现DE、AD、BE之间存在着一个新的数量关系,请直接写出这一数量关系。20.(8分)如图,在平面直角坐标系中,点A的坐标(2,0),点C是y轴上的动点,当点C在y轴上移动时,始终保持是等边三角形(点A、C、P按逆时针方向排列);当点C移动到O点时,得到等边三角形AOB(此时点P与点B重合).〖初步探究〗(1)点B的坐标为;(2)点C在y轴上移动过程中,当等边三角形ACP的顶点P在第二象限时,连接BP,求证:;〖深入探究〗(3)当点C在y轴上移动时,点P也随之运动,探究点P在怎样的图形上运动,请直接写出结论,并求出这个图形所对应的函数表达式;〖拓展应用〗(4)点C在y轴上移动过程中,当OP=OB时,点C的坐标为.21.(8分)如图,在中,是边上的一点,,平分,交边于点,连接.(1)求证:;(2)若,,求的度数.22.(10分)爸爸想送小明一个书包和一辆自行车作为新年礼物,在甲、乙两商场都发现同款的自行车单价相同,书包单价也相同,自行车和书包单价之和为452元,且自行车的单价比书包的单价4倍少8元.(1)求自行车和书包单价各为多少元;(2)新年来临赶上商家促销,乙商场所有商品打八五折(即8.5折)销售,甲全场购物每满100元返购物券30元(即不足100元不返券,满100元送30元购物券,满200元送60元购物券),并可当场用于购物,购物券全场通用.但爸爸只带了400元钱,如果他只在同一家商场购买看中的两样物品,在哪一家买更省钱?23.(10分)如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线l对称的△A1B1C1;(要求:A与A1,B与B1,C与C1相对应)(2)在(1)问的结果下,连接BB1,CC1,求四边形BB1C1C的面积.24.(10分)端午节期间,甲、乙两人沿同一路线行驶,各自开车同时去离家千米的景区游玩,甲先以每小时千米的速度匀速行驶小时,再以每小时千米的速度匀速行驶,途中休息了一段时间后,仍按照每小时千米的速度匀速行驶,两人同时到达目的地,图中折线、线段分别表示甲、乙两人所走的路程、与时间之间的函数关系的图象请根据图象提供的信息,解决下列问题:(1)乙的速度为:_______;(2)图中点的坐标是________;(3)图中点的坐标是________;(4)题中_________;(5)甲在途中休息____________.25.(12分)阅读材料:“直角三角形如果有一个角等于,那么这个角所对的边等于斜边的一半”,即“在中,,则”.利用以上知识解决下列问题:如图,已知是的平分线上一点.(1)若与射线分别相交于点,且.①如图1,当时,求证:;②当时,求的值.(2)若与射线的反向延长线、射线分别相交于点,且,请你直接写出线段三者之间的等量关系.26.“低碳环保,绿色出行”的概念得到广大群众的接受,越来越多的人喜欢选择骑自行车作为出行工具.小军和爸爸同时骑车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以米/分的速度到达图书馆.小军始终以同一速度骑行,两人骑行的路程为(米)与时间(分钟)的关系如图.请结合图象,解答下列问题:(1)填空:______;______;______.(2)求线段所在直线的解析式.(3)若小军的速度是120米/分,求小军第二次与爸爸相遇时距图书馆的距离.

参考答案一、选择题(每题4分,共48分)1、B【分析】科学记数法表示较小的数,一般形式为:,其中,n等于原数由左边起第一个不为零的数字前面的0的个数.【详解】,其中,n等于原数由左边起第一个不为零的数字前面的0的个数.,故选B.【点睛】本题主要考查用科学记数法表示较小的数,难度较低,熟练掌握科学记数法是解题关键.2、D【分析】根据分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变,可得答案.【详解】A、,故A正确;B、分子、分母同时乘以﹣1,分式的值不发生变化,故B正确;C、分子、分母同时乘以3,分式的值不发生变化,故C正确;D、≠,故D错误;故选D.【点睛】本题考查了分式的基本性质,分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变.3、A【分析】先把a,b,c化成以3为底数的幂的形式,再比较大小.【详解】解:故选A.【点睛】此题重点考察学生对幂的大小比较,掌握同底数幂的大小比较方法是解题的关键.4、D【分析】根据计划x天生产120个零件,由于改进技术,每天比计划多生产3个,因此比原计划提前2天完成,可列出方程.【详解】解:设计划x天生产120个零件,.故选D.【点睛】本题考查由实际问题抽象出分式方程,关键设出天数,以件数作为等量关系列方程.5、A【分析】根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠A的度数【详解】解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∠ABP=20°,∠ACP=50°,

∴∠ABC=2∠ABP=40°,∠ACM=2∠ACP=100°,

∴∠A=∠ACM-∠ABC=60°故选A.【点睛】本题考查了角平分线的定义,一个三角形的外角等于与它不相邻的两个内角,难度适中.6、C【分析】根据求方差的公式进行判断.【详解】由可得,共有6名选手,平均成绩为38分,总分为.故A、B、D选项正确,不符合题意,C选项错误,符合题意.故选:C.【点睛】考查了求方差的公式,解题关键是理解求方差公式中各数的含义.7、D【分析】本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边4既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即4是斜边或直角边的两种情况,然后利用勾股定理求解.【详解】设第三边为,

(1)若4是直角边,则第三边是斜边,由勾股定理得:

,∴;

(2)若4是斜边,则第三边为直角边,由勾股定理得:

,∴;

综上:第三边的长为5或.

故选:D.【点睛】本题考查了利用勾股定理解直角三角形的能力,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.8、C【解析】由题意得:x=y,∴4x+3x=14,∴x=1,y=1,把它代入方程kx+(k-1)y=6得1k+1(k-1)=6,解得k=1.故选C.9、C【详解】根据三角形的一个外角等于与它不相邻的两个内角的和,知∠ACD=∠A+∠B,∴∠A=∠ACD﹣∠B=120°﹣40°=80°.故选C.10、A【分析】利用负整数指数幂法则,以及倒数的定义判断即可.【详解】2-3==,则2-3的倒数是8,故选:A.【点睛】本题考查了负整数指数幂,以及倒数,熟练掌握运算法则是解本题的关键.11、D【分析】众数为一组数据中出现次数最多的数,由此可确定x的值,再根据中位数是将这组数据按从小到大的顺序排列后最中间的一个数(奇数个数据)或最中间两个数的平均数(偶数个数据)确定这组数据的中位数即可.【详解】解:这组数据的众数是4,因此x=4,将这组数据从小到大排序后为0,2,3,4,4,6,处在最中间的两个数的平均数为,因此中位数是3.1.故选:D.【点睛】本题考查了中位数和众数,会求一组数据的中位数和众数是解题的关键.12、A【分析】首先计算出多边形的外角的度数,再根据外角和÷外角度数=边数可得答案.【详解】∵多边形的每个内角都是108°,

∴每个外角是180°-108°=72°,

∴这个多边形的边数是360°÷72°=5,

∴这个多边形是五边形,

故选A.【点睛】此题考查多边形的外角与内角,解题关键是掌握多边形的外角与它相邻的内角互补.二、填空题(每题4分,共24分)13、0<x≤1.【分析】从图象上得到直线与坐标轴的交点坐标,再根据函数的增减性,可以得出不等式0≤kx+b<5的解集.【详解】函数y=kx+b的图象如图所示,函数经过点(1,0),(0,5),且函数值y随x的增大而减小,

∴不等式0≤kx+b<5的解集是0<x≤1.

故答案为0<x≤1.14、【分析】依据比例的性质,即可得到a=b,再代入分式化简计算即可.【详解】解:∵,

∴a=5a-5b,

∴a=b,

∴,

故答案为:.【点睛】本题主要考查了比例的性质,解题时注意:内项之积等于外项之积.15、1.【分析】分式的值为2的条件是:(1)分子=2;(1)分母≠2.两个条件需同时具备,缺一不可.【详解】解:若代数式的值为零,则(x﹣1)=2或(x﹣1)=2,即x=1或1,∵|x|﹣1≠2,x≠1,∴x的取值应为1,故代数式的值为零,则x的取值应为1.【点睛】由于该类型的题易忽略分母不为2这个条件,所以常以这个知识点来命题.16、10【解析】根据三角形外角的性质,结合已知,得∠E=∠CDG,同理,,∠CDG=∠ACB,,得出∠ACB=∠B,利用三角形内角和180°,计算即得.【详解】∵DE=DF,CG=CD,∴∠E=∠EFD=∠CDG,∠CDG=∠CGD=∠ACB,又∵AB=AC,∴∠ACB=∠B=(180°-∠A)=(180°-100°)=40°,∴∠E=,故答案为:10°.【点睛】本题考查了等腰三角形的性质以及三角形外角的性质,解题的关键是灵活运用等腰三角形的性质和三角形外角的性质确定各角之间的关系.17、【分析】根据二次根式及分式有意义的条件,结合所给式子得到关于x的不等式组,解不等式组即可求出x的取值范围.【详解】由题意得,,解得:-2<x≤3,故答案为-2<x≤3.【点睛】本题考查了二次根式及分式有意义的条件,注意掌握二次根式有意义:被开方数为非负数,分式有意义分母不为零.18、1【分析】由DE垂直平分AB,可得AE=BE,由△ABC中,AB=AC,∠BAC=120°,可求得∠B=∠C=∠EAB=30°,继而求得AE的长,继而求得答案.【详解】∵△ABC中,AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵DE垂直平分AB,∴AE=BE,∴∠EAB=∠B=30°,∴AE=BE=2DE=2×2=4,∴∠EAC=∠BAC-∠BAE=90°,∴CE=2AE=1,故答案为1.【点睛】此题考查了线段垂直平分线的性质以及含30°角的直角三角形的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.三、解答题(共78分)19、(1)全等,理由见解析;(2)见解析;(3)DE=AD−BE.理由见解析【分析】(1)根据同角的余角相等得到∠ACD=∠BCE,证明△ADC≌△CEB即可;(2)根据全等三角形的性质得到BE=CD,CE=AD,结合图形得到结论;(3)与(1)的证明方法类似,证明△ADC≌△CEB即可.【详解】(1)△ADC≌△CEB.理由如下:∵∠ACB=90°,∴∠ACD+∠BCE=90°,∵BE⊥MN,∴∠CBE+∠BCE=90°,∴∠ACD=∠BCE,在△ADC和△CEB中,,∴△ADC≌△CEB;(2)∵△ADC≌△CEB,∴BE=CD,CE=AD,∴DE=CE+CD=AD+BE;(3)DE=AD−BE.证明:∵∠ACB=90°,∴∠ACD+∠BCE=90°,∵AD⊥MN,∴∠ACD+∠DAC=90°,∴∠DAC=∠BCE,在△ADC和△CEB中,,∴△ADC≌△CEB,∴AD=CE,CD=BE,∴DE=CE−CD=AD−BE.【点睛】此题考查几何变换综合题,全等三角形的判定与性质,旋转的性质,解题关键在于掌握判定定理.20、(1);(2)证明见解析;(3)点P在过点B且与AB垂直的直线上,;(4).【分析】(1)作BD⊥x轴,与x轴交于D,利用等边三角形的性质和勾股定理即可解得;(2)根据等边三角形的性质可得两组对应边相等,再结合角的和差可得∠BAP=∠OAC,再利用SAS可证得全等;(3)由(2)可知PB⊥AB,由此可得P的运动轨迹,再求得AB的解析式,根据垂直的两条直线的一次项系数互为负倒数设BP的解析式,将B点坐标代入即可求得解析式;(4)利用两点之间距离公式求得P点坐标,再利用勾股定理求得BP,结合(2)可知OC=BP,由此可得C点坐标.【详解】解:(1)∵A(0,2),∴OA=2,过点B作BD⊥x轴,∵△OAB为等边三角形,OA=2,∴OB=OA=2,OD=1,∴即,故答案为:;(2)证明:∵△OAB和ACP为等边三角形,∴AC=AP,AB=OA,∠CAP=∠OAB=60°,∴∠BAP=∠OAC,∴(SAS);(3)如上图,∵,∴∠ABP=∠AOC=90°,∴点P在过点B且与AB垂直的直线上.设直线AB的解析式为:,则,解得:,∴,∴设直线BP的解析式为:,则,解得,故;(4)设,∵OP=OB,∴,解得:,(舍去),故此时,,∵点A、C、P按逆时针方向排列,∴,故答案为:.【点睛】本题考查求一次函数解析式,勾股定理,全等三角形的性质和判定,等边三角形的性质.解题的关键是正确寻找全等三角形解决问题.21、(1)见解析;(2)【分析】(1)由角平分线定义得出,由证明即可;(2)由三角形内角和定理得出,由角平分线定义得出,在中,由三角形内角和定理即可得出答案.【详解】(1)证明:平分,,在和中,,;(2),,,平分,,在中,.【点睛】本题考查了全等三角形的判定与性质、角平分线的定义、三角形内角和定理;熟练掌握三角形内角和定理和角平分线定义,证明三角形全等是解题的关键.22、(1)自行车的单价为360元/辆,书包的单价为92元/个;(2)在甲商店购买更省钱.【分析】(1)设自行车的单价为x元/辆,书包的单价为y元/个,根据“自行车和书包单价之和为452元,且自行车的单价比书包的单价4倍少8元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据甲、乙两商店的优惠政策分别求出在两商店购买所需费用,比较后即可得出结论.【详解】(1)设自行车的单价为x元/辆,书包的单价为y元/个,根据题意得:,解得:,答:自行车的单价为360元/辆,书包的单价为92元/个;(2)在甲商店购买所需费用为:360+92﹣30×3=362(元),在乙商店购买所需费用为:452×0.85=384.2(元),∵362<384.2,∴在甲商店购买更省钱.【点睛】本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据甲、乙两商店的优惠政策分别求出在两商店购买所需费用.23、(1)见解析;(2)12.【分析】(1)关于轴对称的两个图形,各对应点的连线被对称轴垂直平分.作BM⊥直线l于点M,并延长到B1,使B1M=BM,同法得到A,C的对应点A1,C1,连接相邻两点即可得到所求的图形.(2)由图得四边形BB1C1C是等腰梯形,BB1=4,CC1=2,高是4,根据梯形的面积公式进行计算即可.【详解】(1)如图,△A1B1C1是△ABC关于直线l的对称图形.(2)由图得四边形BB1C1C是等腰梯形,BB1=4,CC1=2,高是4.∴S四边形BB1C1C=.【点睛】此题主要考查了作轴对称变换,在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的,一般的方法是:

①由已知点出发向所给直线作垂线,并确定垂足;

②直线的另一侧,以垂足为一端点,作一条线段使之等于已知点和垂足之间的线段的长,得到线段的另一端点,即为对称点;

③连接这些对称点,就得到原图形的轴对称图形.24、(1)80千米/小时;(2)(1,60);(3)(2,160);(4);(5)1.【分析】(1)根据速度=路程时间即可得出乙的速度;(2)根据路程=速度时间,可得甲1小时所行驶的路程,即可得出A点坐标;(3)根据D的坐标可计算直线OD的解析式,从图中知E的横坐标为2,可得E的坐标;(4)根据2小时时甲追上乙,可知两人路程相等,列出方程,解方程即可;(5)根据点E到D的时间差及速度可得休息的时间.【详解】(1)乙的速度为:(千米/小时);故答案为:80千米/小时(2)∵甲先以每小时千米的速度匀速行驶小时到达A∴此时,甲走过的路程为60千米∴图中点的坐标是(1,60);故答案为:(1,60)(3)设直线OD的解析式为:,把代入得:,,∴直线OD的解析式为:,当时,,,故答案为:(4)由图像可知,两小时时,甲追上乙,由题意得:,∴,故答案为:1(5)∵,∴甲在途中休息1.故答案为:1【点睛】本题考查了一次函数的应用,读懂函数图象,理解横、纵坐标表示的含义,熟练掌握一次函数的相关知识、利用数形结合思想是解题的关键.25、(1)①证明见解析;②;(2)OM-ON=【分析】(1)①根据题意证明CNO=90°及∠COM=∠CON=30°,可利用题目中信息得到OM=ON,再利用勾股定理即可解答;②证明△COM≌CON,得到∠CMO=∠CNO=90°,再利用①中结论即可;(2)根据题意作出辅助线,再证明△MCE≌△NCF(ASA),得到NF=ME,由30°直角三角形的性质得到OE=OF=,进而

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论