版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021年河北省张家口市某学校数学高职单招模拟考试(含答案)学校:________班级:________姓名:________考号:________
一、单选题(10题)1.A.(1,2)B.(3,4)C.(0,1)D.(5,6)
2.函数的定义域()A.[3,6]B.[-9,1]C.(-∞,3]∪[6,+∞)D.(-∞,+∞)
3.已知椭圆的一个焦点为F(0,1),离心率e=1/2,则该椭圆的标准方程为()A.x2/3+y2/4=1
B.x2/4+y2/3=1
C.x2/2+y2=1
D.y2/2+x2=1
4.正方形ABCD的边长为12,PA丄平面ABCD,PA=12,则点P到对角线BD的距离为()A.12
B.12
C.6
D.6
5.已知圆C与直线x-y=0及x-y-4=0都相切,圆心在直线x+y=0上,则圆C的方程为()A.(x+1)2+(y-1)2=2
B.(x-1)2+(y+1)2=2
C.(x-1)2+(y-1)2=2
D.(x+1)2+(y+1)2=2
6.A.(1,2)B.(3,4)C.(0,1)D.(5,6)
7.A.1B.2C.3D.4
8.A.7.5
B.C.6
9.一个几何体的三视图如图所示,则该几何体可以是()A.棱柱B.棱台C.圆柱D.圆台
10.已知a是第四象限角,sin(5π/2+α)=1/5,那么tanα等于()A.
B.
C.
D.
二、填空题(10题)11.如图是一个程序框图,若输入x的值为8,则输出的k的值为_________.
12.
13.为椭圆的焦点,P为椭圆上任一点,则的周长是_____.
14.抛物线y2=2x的焦点坐标是
。
15.
16.某校有老师200名,男学生1200名,女学生1000名,现用分层抽样的方法从所有师生中抽取一个容量为240的样本,则从女生中抽取的人数为______.
17.己知两点A(-3,4)和B(1,1),则=
。
18.按如图所示的流程图运算,则输出的S=_____.
19.正方体ABCD-A1B1C1D1中AC与AC1所成角的正弦值为
。
20.
三、计算题(5题)21.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.
22.解不等式4<|1-3x|<7
23.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.
24.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.
25.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.
四、证明题(5题)26.如图所示,四棱锥中P-ABCD,底面ABCD为矩形,点E为PB的中点.求证:PD//平面ACE.
27.
28.己知x∈(1,10),A=lg2x,B=lgx2,证明:A<B.
29.己知正方体ABCD-A1B1C1D1,证明:直线AC1与直线A1D1所成角的余弦值为.
30.△ABC的三边分别为a,b,c,为且,求证∠C=
五、简答题(5题)31.一条直线l被两条直线:4x+y+6=0,3x-5y-6=0截得的线段中点恰好是坐标原点,求直线l的方程.
32.已知双曲线C的方程为,离心率,顶点到渐近线的距离为,求双曲线C的方程
33.某中学试验班有同学50名,其中女生30人,男生20人,现在从中选取2人取参加校际活动,求(1)选出的2人都是女生的概率。(2)选出的2人是1男1女的概率。
34.三个数a,b,c成等差数列,公差为3,又a,b+1,c+6成等比数列,求a,b,c。
35.已知函数,且.(1)求a的值;(2)求f(x)函数的定义域及值域.
六、综合题(5题)36.己知点A(0,2),5(-2,-2).(1)求过A,B两点的直线l的方程;(2)己知点A在椭圆C:上,且(1)中的直线l过椭圆C的左焦点。求椭圆C的标准方程.
37.己知椭圆与抛物线y2=4x有共同的焦点F2,过椭圆的左焦点F1作倾斜角为的直线,与椭圆相交于M、N两点.求:(1)直线MN的方程和椭圆的方程;(2)△OMN的面积.
38.
39.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)
40.
(1)求该直线l的方程;(2)求圆心该直线上且与两坐标轴相切的圆的标准方程.
参考答案
1.A
2.A
3.A椭圆的标准方程.由题意得,椭圆的焦点在y轴上,且c=l,e=c/a=1/2,故a=2,b=则補圆的标准方程为x2/3+y2/4=1
4.D
5.B
6.A
7.B
8.B
9.D空间几何体的三视图.从俯视图可看出该几何体上下底面为半径不等的圆,正视图与侧视图为等腰梯形,故此几何体为圆台.
10.B三角函数的诱导公式化简sin(5π/2+α)=sin(2π+π/2+α)=sin(π/2+α)=cosα=1/5,因α是第四象限角,所以sinα
11.4程序框图的运算.执行循环如下:x=2×8+1=17,k=1;x=2×17+1=35,k=2时;x=2×35+1=71,k=3时;x=2×71+1=143>115,k=4,此时满足条件.故输出k的值为4.
12.-1/16
13.18,
14.(1/2,0)抛物线y2=2px(p>0)的焦点坐标为F(P/2,0)。∵抛物线方程为y2=2x,
∴2p=2,得P/2=1/2
∵抛物线开口向右且以原点为顶点,
∴抛物线的焦点坐标是(1/2,0)。
15.1
16.100分层抽样方法.各层之比为200:1200:1000=1:6:5推出从女生中抽取的人数240×5/12=100.
17.
18.20流程图的运算.由题意可知第一次a=5,s=1,满足a≥4,S=1×5=5,a=a-1=4,当a=4时满足a≥4,输出S=20.综上所述,答案20.
19.
,由于CC1=1,AC1=,所以角AC1C的正弦值为。
20.1<a<4
21.
22.
23.
24.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为
25.
26.
∴PD//平面ACE.
27.
28.证明:考虑对数函数y=lgx的限制知
:当x∈(1,10)时,y∈(0,1)A-B=lg2
x-lgx2
=lgx·lgx-2lgx=lgx(lgx-2)∵lgx∈(0,1)∴lgx-2<0A-B<0∴A<B
29.
30.
31.
32.
33.(1)2人都是女生的概率P=C(2,30)/C(2,50)=30*29/(50*49)=0.35510
(2)2人都是男生的概率P=C(2,20)/C(2,50)=20*19/(50*49)=0.15510
选出的一男一女的概率P=C(1,20)*C(1,30)/C(2,50)=20*30/((50*49)/2)=0.4897
34.由已知得:由上可解得
35.(1)(2)
36.解:(1)直线l过A(0,2),B(-2,-2)两点,根据斜率公式可得斜率因此直线l的方程为y-2=2x即2x-y+2=0⑵由⑴知,直线l的方程为2x-y+2=0,因此直线l与x轴的交点为(-1,0).又直线l过椭圆C的左焦点,故椭圆C的左焦点为(-1,0).设椭圆C的焦距为2c,则有c=1因为点A(0,2)在椭圆C:上所以b=2根据a2=b2+c2,有a=故椭圆C的标准方程为
37.
38.
39.
40.解:(1)斜率k=5/3,设直线l的方程5x-3y+m=0,直线l经过点(0,-8/3),所以m=8,直线l的方程为5x-3y-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年税务师《税法2》考前冲刺必会试题库300题(含详解)
- 期末模拟冲刺卷(一)2024-2025学年人教版PEP英语三年级上册(含答案无听力原文无听力音频)
- 河南省南阳市多校2024-2025学年上学期12月素养评估(三)八年级数学试题(含答案)
- 示范教案(第一节荒漠化的防治以我国西北地区为例)
- 模拟电子技术(山东联盟-山东建筑大学)知到智慧树章节测试课后答案2024年秋山东建筑大学
- 公司团建活动方案
- 2024-2025学年牛津版初二上学期期中英语试题及解答参考
- 《中国经济结构》课件
- 2024年低压电工操作证考试试题及答案
- 初中作文指导课件:提高语言表达能力
- 江苏省镇江市2021年中考一模语文试题(含答案与解析)
- 北京市西城区2023-2024学年五年级上学期期末数学试卷
- 智能配电网规划与运行优化策略
- 华为经营管理-华为供应链管理(6版)
- 14S501-2 双层井盖图集
- 小学幼儿园教师汉语拼音教学与培训课件
- 抗菌药物使用强度整改的PDCA案例
- 人类文明史漫谈智慧树知到课后章节答案2023年下天津大学
- 体能训练-发展上肢力量教学设计
- 电路基础-完整全套教学课件
- 高压氧科工作总结
评论
0/150
提交评论