下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022学年内蒙古自治区呼伦贝尔市某学校数学高职单招模拟考试(含答案)学校:________班级:________姓名:________考号:________
一、单选题(10题)1.若sinα与cosα同号,则α属于()A.第一象限角B.第二象限角C.第一、二象限角D.第一、三象限角
2.若函数f(x)=x2+ax+3在(-∞,1]上单调递减,则实数a的取值范围是()A.(-∞,1]B.[―1,+∞)C.(―∞,-2]D.(-2,+∞)
3.“a,b,c都不等于0”的否定是A.a,b,c都等于0B.a,b,c不都等于0C.a,b,c中至少有一个不等于0D.a,b,c中至少有一个等于0
4.6人站成一排,甲乙两人之间必须有2人,不同的站法有()A.144种B.72种C.96种D.84种
5.设m>n>1且0<a<1,则下列不等式成立的是()A.
B.
C.
D.
6.若x2-ax+b<0的解集为(1,2),则a+b=()A.5B.-5C.1D.-1
7.某高职院校为提高办学质量,建设同时具备理论教学和实践教学能力的“双师型”教师队伍,现决定从3名男教师和3名女教师中任选2人一同到某企业实训,则选中的2人都是男教师的概率为()A.
B.
C.
D.
8.A.10B.5C.2D.12
9.已知i是虚数单位,则1+2i/1+i=()A.3-i/2B.3+i/2C.3-iD.3+i
10.已知集合,A={0,3},B={-2,0,1,2},则A∩B=()A.空集B.{0}C.{0,3}D.{-2,0,1,2,3}
二、填空题(10题)11.某田径队有男运动员30人,女运动员10人.用分层抽样的方法从中抽出一个容量为20的样本,则抽出的女运动员有______人.
12.
13.若集合,则x=_____.
14.
15.长方体中,具有公共顶点A的三个面的对角线长分别是2,4,6,那么这个长方体的对角线的长是_____.
16.若事件A与事件互为对立事件,则_____.
17.执行如图所示的流程图,则输出的k的值为_______.
18.若lgx=-1,则x=______.
19.某程序框图如下图所示,该程序运行后输出的a的最大值为______.
20.10lg2=
。
三、计算题(5题)21.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.
22.解不等式4<|1-3x|<7
23.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.
24.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.
25.在等差数列{an}中,前n项和为Sn
,且S4
=-62,S6=-75,求等差数列{an}的通项公式an.
四、证明题(5题)26.如图所示,四棱锥中P-ABCD,底面ABCD为矩形,点E为PB的中点.求证:PD//平面ACE.
27.己知
a
=(-1,2),b
=(-2,1),证明:cos〈a,b〉=4/5.
28.己知x∈(1,10),A=lg2x,B=lgx2,证明:A<B.
29.己知正方体ABCD-A1B1C1D1,证明:直线AC1与直线A1D1所成角的余弦值为.
30.
五、简答题(5题)31.求到两定点A(-2,0)(1,0)的距离比等于2的点的轨迹方程
32.简化
33.点A是BCD所在平面外的一点,且AB=AC,BAC=BCD=90°,BDC=60°,平面ABC丄平面BCD。(1)求证平面ABD丄平面ACD;(2)求二面角A-BD-C的正切值。
34.已知集合求x,y的值
35.已知求tan(a-2b)的值
六、综合题(5题)36.
(1)求该直线l的方程;(2)求圆心该直线上且与两坐标轴相切的圆的标准方程.
37.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)
38.己知点A(0,2),5(-2,-2).(1)求过A,B两点的直线l的方程;(2)己知点A在椭圆C:上,且(1)中的直线l过椭圆C的左焦点。求椭圆C的标准方程.
39.己知椭圆与抛物线y2=4x有共同的焦点F2,过椭圆的左焦点F1作倾斜角为的直线,与椭圆相交于M、N两点.求:(1)直线MN的方程和椭圆的方程;(2)△OMN的面积.
40.
参考答案
1.D
2.C二次函数图像的性质.根据二次函数图象的对称性有-a/2≥1,得a≤-2.
3.D
4.A6人站成一排,甲乙两人之间必须有2人,可以先从其余4人中选出2人,安排在甲乙两人之间,在与其余两人进行排列,所以不同站法共有种。
5.A同底时,当底数大于0小于1时,减函数;当底数大于1时,增函数,底数越大值越大。
6.A一元二次不等式与一元二次方程的应用,根与系数的关系的应用问题.即方程x2-ax+b=0的两根为1,2.由根与系数关系得解得a=3.所以a+b=5.
7.C
8.A
9.B复数的运算.=1+2i/1+i=(1+2i)(1-i)f(1+i)(1-i)=l-i+2i-2i2/1-i2=3+i/2
10.B集合的运算.根据交集定义,A∩B={0}
11.5分层抽样方法.因为男运动员30人,女运动员10人,所以抽出的女运动员有10f(10+30)×20=1/4×20=5人.
12.2π/3
13.
,AB为A和B的合集,因此有x2=3或x2=x且x不等于1,所以x=
14.-1/16
15.
16.1有对立事件的性质可知,
17.5程序框图的运算.由题意,执行程序框图,可得k=1,S=1,S=3,k=2不满足条件S>16,S=8,k=3不满足条件S>16,S=16,k=4不满足条件S>16,S=27,k=5满足条件S>16,退出循环,输出k的值为5.故答案为:5.
18.1/10对数的运算.x=10-1=1/10
19.45程序框图的运算.当n=1时,a=15;当时,a=30;当n=3,a=45;当n=4不满足循环条件,退出循环,输出a=45.
20.lg102410lg2=lg1024
21.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为
22.
23.
24.
25.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23
26.
∴PD//平面ACE.
27.
28.证明:考虑对数函数y=lgx的限制知
:当x∈(1,10)时,y∈(0,1)A-B=lg2
x-lgx2
=lgx·lgx-2lgx=lgx(lgx-2)∵lgx∈(0,1)∴lgx-2<0A-B<0∴A<B
29.
30.
31.
32.
33.分析:本题考查面面垂直的证明,考查二面角的正切值的求法。(1)推导出CD⊥AB,AB⊥AC,由此能证明平面ABD⊥平面ACD。
(2)取BC中点O,以O为原点,过O作CD的平行线为x轴,OC为y轴,OA为z轴,建立空间直角坐标系,利用向量法能求出二面角A-BD-C的正切值。解答:证明:(Ⅰ)∵面ABC⊥底面BCD,∠BCD=90°,面ABC∩面BCD=BC,
∴CD⊥平面ABC,∴CD⊥AB,
∵∠BAC=90°,∴AB⊥AC,
∵AC∩CD=C,
∴平面ABD⊥平面ACD。解:(Ⅱ)取BC中点O,∵面ABC⊥底面BCD,∠BAC=90°,AB=AC,
∴AO⊥BC,∴AO⊥平面BDC,
以O为原点,过O作CD的平行线为x轴,OC为y轴,OA为z轴,建立空间直角坐标系,
34.
35.
36.解:(1)斜率k=5/3,设直线l的方程5x-3y+m=0,直线l经过点(0,-8/3),所以m=8,直线l的方程为5x-3y-8=0。(2)设圆心为C(a,b),圆与两坐标轴相切,故a=±b又圆心在直线5x-3y-8=0上,将a=b或a=-b代入直线方程得:a=4或a=1当a=4时,b
=4,此时r=4,圆的方程为(x-4)2
+(y-4)2=16当a=1时,b
=-1,此时r=1,圆的方程为(x-1)2
+(y+1)2=1
37.
38.解:(1)直线l过A(0,2),B(-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024制式租赁合同-新型办公家具租赁协议3篇
- 淀粉行业的企业文化与员工激励机制考核试卷
- 温控课程设计小组
- 杭州通风空调课程设计
- 《服务生态系统的区域景观营建理论与方法研究》
- 整流电路课课程设计
- 管理系统c 课程设计
- 冀教版数学四下《小数加减法》教案
- 幼儿园水果发音课程设计
- 清洗水果课程设计理念
- 供应商交货期协议书
- 大学生防诈骗课件
- 神经病学-头痛
- 激光技术员年终总结
- 地球辐射带模型使用指南
- 国家开放大学电大《计算机应用基础(本)》学士学位论文家用电器销售管理系统的设计与实现
- 2024年山西师范大学马克思主义基本原理概论(期末考试题+答案)2
- 1北京师范大学马克思主义哲学期末测试卷
- MOOC 管理学-北京师范大学 中国大学慕课答案
- 智能建造理论与实践 课件全套 第1-6章 智能建造概述- 智慧城市
- 开展安全生产三年治本攻三年行动方案深度解读(危化)
评论
0/150
提交评论