




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021年安徽省淮北市某学校数学高职单招试题(含答案)学校:________班级:________姓名:________考号:________
一、单选题(10题)1.已知点A(-1,2),B(3,4),若,则向量a=()A.(-2,-1)B.(1,3)C.(4,2)D.(2,1)
2.一条线段AB是它在平面a上的射景的倍,则B与平面a所成角为()A.30°B.45°C.60°D.不能确定
3.设f(g(π))的值为()A.1B.0C.-1D.π
4.若函数f(x)=kx+b,在R上是增函数,则()A.k>0B.k<0C.b<0D.b>0
5.以点P(2,0),Q(0,4)为直径的两个端点的圆的方程是()A.(x-l)2+(y-2)2=5
B.(x-1)2+y2=5
C.(x+1)2+y2=25
D.(x+1)2+y=5
6.A.B.{-1}
C.{0}
D.{1}
7.已知A(1,1),B(-1,5)且,则C的坐标为()A.(0,3)B.(2,-4)C.(1,-2)D.(0,6)
8.下列双曲线中,渐近线方程为y=±2x的是()A.x2-y2/4=1
B.x2/4-y2=1
C.x2-y2/2=1
D.x2/2-y2=1
9.若函数y=√1-X,则其定义域为A.(-1,+∞)B.[1,+∞]C.(-∞,1]D.(-∞,+∞)
10.在正方体ABCD-A1B1C1D1中,二面角D1-AB-D的大小是()A.30°B.60°C.45°D.90°
二、填空题(10题)11.设平面向量a=(2,sinα),b=(cosα,1/6),且a//b,则sin2α的值是_____.
12.
13.已知等差数列{an}的公差是正数,且a3·a7=-12,a4+a6=-4,则S20=_____.
14.化简
15.某工厂生产A、B、C三种不同型号的产品,产品数量之比依次为2:3:4,现用分层抽样方法抽出一个容量为n的样本,样本中A种型号产品有6件,那么n=
。
16.
17.
18.正方体ABCD-A1B1C1D1中AC与AC1所成角的正弦值为
。
19.算式的值是_____.
20.
三、计算题(5题)21.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.
22.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.
23.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.
24.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
25.在等差数列{an}中,前n项和为Sn
,且S4
=-62,S6=-75,求等差数列{an}的通项公式an.
四、证明题(5题)26.长、宽、高分别为3,4,5的长方体,沿相邻面对角线截取一个三棱锥(如图).求证:剩下几何体的体积为三棱锥体积的5倍.
27.己知sin(θ+α)=sin(θ+β),求证:
28.
29.若x∈(0,1),求证:log3X3<log3X<X3.
30.己知直线l:x+y+4=0且圆心为(1,-1)的圆C与直线l相切。证明:圆C的标准方程为(x-1)2
+(y+1)2
=8.
五、简答题(5题)31.求k为何值时,二次函数的图像与x轴(1)有2个不同的交点(2)只有1个交点(3)没有交点
32.四棱锥S-ABCD中,底面ABOD为平行四边形,侧面SBC丄底面ABCD(1)证明:SA丄BC
33.等差数列的前n项和为Sn,已知a10=30,a20=50。(1)求通项公式an。(2)若Sn=242,求n。
34.已知求tan(a-2b)的值
35.在1,2,3三个数字组成无重复数字的所有三位数中,随机抽取一个数,求:(1)此三位数是偶数的概率;(2)此三位数中奇数相邻的概率.
六、综合题(5题)36.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)
37.
(1)求该直线l的方程;(2)求圆心该直线上且与两坐标轴相切的圆的标准方程.
38.
39.己知点A(0,2),5(-2,-2).(1)求过A,B两点的直线l的方程;(2)己知点A在椭圆C:上,且(1)中的直线l过椭圆C的左焦点。求椭圆C的标准方程.
40.己知椭圆与抛物线y2=4x有共同的焦点F2,过椭圆的左焦点F1作倾斜角为的直线,与椭圆相交于M、N两点.求:(1)直线MN的方程和椭圆的方程;(2)△OMN的面积.
参考答案
1.D
2.B根据线面角的定义,可得AB与平面a所成角的正切值为1,所以所成角为45°。
3.B值的计算.g(π)=0,f(g(π))=f(0)=0
4.A
5.A圆的方程.圆心为((2+0)/2,(0+4)/2)即(1,2),
6.C
7.A
8.A双曲线的渐近线方程.由双曲线渐近线方程的求法知,双曲线x2-y2/4=1的渐近线方程为y=±2x
9.C
10.C
11.2/3平面向量的线性运算,三角函数恒等变换.因为a//b,所以2x1/6-sinαcosα=0即sinαcosα=1/3.所以sin2α=2sinαcosα=2/3.
12.2π/3
13.180,
14.1+2cos2a-cos2=1+2cos2a-(cos2a-sin2a)=1+cos2a+sin2a=2
15.72
16.-3由于cos(x+π/6)的最小值为-1,所以函数f(x)的最小值为-3.
17.33
18.
,由于CC1=1,AC1=,所以角AC1C的正弦值为。
19.11,因为,所以值为11。
20.π/3
21.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为
22.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4
23.
24.
25.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23
26.证明:根据该几何体的特征,可知所剩的几何体的体积为长方体的体积减去所截的三棱锥的体积,即
27.
28.
29.
30.
31.∵△(1)当△>0时,又两个不同交点(2)当A=0时,只有一个交点(3)当△<0时,没有交点
32.证明:作SO丄BC,垂足为O,连接AO∵侧面SB丄底面ABCD∴SO丄底面ABCD∵SA=SB∴0A=0B又∵ABC=45°∴AOB是等腰直角三角形则OA丄OB得SA丄BC
33.
34.
35.1,2,3三个数字组成无重复数字的所有三位数共有(1)其中偶数有,故所求概率为(2)其中奇数相邻的三位数有个故所求概率为
36.
37.解:(1)斜率k=5/3,设直线l的方程5x-3y+m=0,直线l经过点(0,-8/3),所以m=8,直线l的方程为5x-3y-8=0。(2)设圆心为C(a,b),圆与两坐标轴相切,故a=±b又圆心在直线5x-3y-8=0上,将a=b或a=-b代入直线方程得:a=4或a=1当a=4时,b
=4,此时r=4,圆的方程为(x-4)2
+(y-4)2=16当a=1时,b
=-1,此时r=1,圆的方程为(x-1)2
+(y+1)2=1
38.
39.解:(1)直线l过A(0,2),B(-2,-2)两点,根
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 青岛远洋船员职业学院《食品生物技术概论》2023-2024学年第二学期期末试卷
- 贵州文化旅游职业学院《全媒体节目制作与包装实验》2023-2024学年第二学期期末试卷
- 2025届湖北省十一校高三上学期第一次联考(一模)历史试卷
- 梧州医学高等专科学校《茶叶机械学》2023-2024学年第二学期期末试卷
- 南阳医学高等专科学校《国土空间规划导论》2023-2024学年第二学期期末试卷
- 兰州工业学院《轨道交通通信技术》2023-2024学年第二学期期末试卷
- 桂林生命与健康职业技术学院《分子生物学实验A》2023-2024学年第二学期期末试卷
- 重庆文化艺术职业学院《信息设计》2023-2024学年第二学期期末试卷
- 武汉铁路职业技术学院《中国古代文学史(四)》2023-2024学年第二学期期末试卷
- 湖北工业大学《工程计量与计价(路桥)》2023-2024学年第二学期期末试卷
- 《上市公司财务舞弊探究的国内外文献综述》5000字
- 2024年护师类之护士资格证考试题库
- 腰椎间盘突出症课件(共100张课件)
- 委托调解民事纠纷协议书合同
- 林学概论完整版本
- GB/T 44458.3-2024运动用眼部和面部保护第3部分:水面游泳用眼镜的要求和试验方法
- 中医四季养生之道课件
- 消防安全教育主题班会课件
- 《2024版 CSCO胃癌诊疗指南》解读
- 情感表达 课件 2024-2025学年人教版(2024)初中美术七年级上册
- 公交驾驶员心理素质培训考核试卷
评论
0/150
提交评论