2021-2022学年江西省吉安市某学校数学单招试卷(含答案)_第1页
2021-2022学年江西省吉安市某学校数学单招试卷(含答案)_第2页
2021-2022学年江西省吉安市某学校数学单招试卷(含答案)_第3页
2021-2022学年江西省吉安市某学校数学单招试卷(含答案)_第4页
2021-2022学年江西省吉安市某学校数学单招试卷(含答案)_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022学年江西省吉安市某学校数学单招试卷(含答案)学校:________班级:________姓名:________考号:________

一、单选题(10题)1.若是两条不重合的直线表示平面,给出下列正确的个数()(1)(2)(3)(4)A.lB.2C.3D.4

2.两个三角形全等是两个三角形面积相等的()A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件

3.A.(6,7)B.(2,-1)C.(-2,1)D.(7,6)

4.将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是()A.4πB.3πC.2πD.π

5.把6本不同的书分给李明和张强两人,每人3本,不同分法的种类数为()A.

B.

C.

D.

6.直线以互相平行的一个充分条件为()A.以都平行于同一个平面

B.与同一平面所成角相等

C.平行于所在平面

D.都垂直于同一平面

7.函数的定义域()A.[3,6]B.[-9,1]C.(-∞,3]∪[6,+∞)D.(-∞,+∞)

8.函数y=lg(x+1)的定义域是()A.(-∞,-1)B.(-∞,1)C.(-l,+∞)D.(1,+∞)

9.已知圆C与直线x-y=0及x-y-4=0都相切,圆心在直线x+y=0上,则圆C的方程为()A.(x+1)2+(y-1)2=2

B.(x-1)2+(y+1)2=2

C.(x-1)2+(y-1)2=2

D.(x+1)2+(y+1)2=2

10.A.-1B.-4C.4D.2

二、填空题(10题)11.若直线6x-4x+7=0与直线ax+2y-6=0平行,则a的值等于_____.

12.

13.某学校共有师生2400人,现用分层抽样的方法,从所有师生中抽取一个容量为160的样本,已知从学生中抽取的人数为150,那么该学校的教师人数是_______.

14.

15.已知_____.

16.二项式的展开式中常数项等于_____.

17.函数f(x)=sin(x+φ)-2sinφcosx的最大值为_____.

18.1+3+5+…+(2n-b)=_____.

19.某田径队有男运动员30人,女运动员10人.用分层抽样的方法从中抽出一个容量为20的样本,则抽出的女运动员有______人.

20.若ABC的内角A满足sin2A=则sinA+cosA=_____.

三、计算题(5题)21.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.

22.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.

23.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.

24.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.

25.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.

四、证明题(5题)26.△ABC的三边分别为a,b,c,为且,求证∠C=

27.

28.若x∈(0,1),求证:log3X3<log3X<X3.

29.己知直线l:x+y+4=0且圆心为(1,-1)的圆C与直线l相切。证明:圆C的标准方程为(x-1)2

+(y+1)2

=8.

30.己知

a

=(-1,2),b

=(-2,1),证明:cos〈a,b〉=4/5.

五、简答题(5题)31.已知平行四边形ABCD中,A(-1,0),B(-1,-4),C(3,-2),E是AD的中点,求。

32.已知cos=,,求cos的值.

33.在等差数列中,已知a1,a4是方程x2-10x+16=0的两个根,且a4>a1,求S8的值

34.求过点P(2,3)且被两条直线:3x+4y-7=0,:3x+4y+8=0所截得的线段长为的直线方程。

35.已知函数,且.(1)求a的值;(2)求f(x)函数的定义域及值域.

六、综合题(5题)36.

(1)求该直线l的方程;(2)求圆心该直线上且与两坐标轴相切的圆的标准方程.

37.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)

38.

39.己知点A(0,2),5(-2,-2).(1)求过A,B两点的直线l的方程;(2)己知点A在椭圆C:上,且(1)中的直线l过椭圆C的左焦点。求椭圆C的标准方程.

40.己知椭圆与抛物线y2=4x有共同的焦点F2,过椭圆的左焦点F1作倾斜角为的直线,与椭圆相交于M、N两点.求:(1)直线MN的方程和椭圆的方程;(2)△OMN的面积.

参考答案

1.B若两条不重合的直线表示平面,由直线和平面之间的关系可知(1)、(4)正确。

2.A两个三角形全等则面积相等,但是两个三角形面积相等不能得到二者全等,所以是充分不必要条件。

3.A

4.C立体几何的侧面积.由几何体的形成过程所得几何体为圆柱,底面半径为1,高为1,其侧面积S=2πrh=2π×1×1=2π.

5.D

6.D根据直线与平面垂直的性质定理,D正确。

7.A

8.C函数的定义.x+1>0所以.x>-1.

9.B

10.C

11.-3,

12.①③④

13.150.分层抽样方法.该校教师人数为2400×(160-150)/160=150(人).

14.-7/25

15.

16.15,由二项展开式的通项可得,令12-3r=0,得r=4,所以常数项为。

17.1.三角函数最值.因f(x)=sinxcosφ+cosxsinφ-2sinφcosx=sinxcosφ-cosxsinφ=sin(x-φ)≤1,故函数f(x)==sin(x+φ)-2sinφcosx的最大值为1.

18.n2,

19.5分层抽样方法.因为男运动员30人,女运动员10人,所以抽出的女运动员有10f(10+30)×20=1/4×20=5人.

20.

21.

22.

23.

24.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4

25.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2

26.

27.

28.

29.

30.

31.平行四边形ABCD,CD为AB平移所得,从B点开始平移,于是C平移了(4,2),所以,D(-1+4,0+2)=(3,2),E是AD中点,E[(-1+3)/2,(0+2)/2]=(1,1)向量EC=(3-1,-2-1)=(2,-3),向量ED=(3-1,2-1)=(2,1)向量EC×向量ED=2×2+(-3)×1=1。

32.

33.方程的两个根为2和8,又∴又∵a4=a1+3d,∴d=2∵。

34.x-7y+19=0或7x+y-17=0

35.(1)(2)

36.解:(1)斜率k=5/3,设直线l的方程5x-3y+m=0,直线l经过点(0,-8/3),所以m=8,直线l的方程为5x-3y-8=0。(2)设圆心为C(a,b),圆与两坐标轴相切,故a=±b又圆心在直线5x-3y-8=0上,将a=b或a=-b代入直线方程得:a=4或a=1当a=4时,b

=4,此时r=4,圆的方程为(x-4)2

+(y-4)2=16当a=1时,b

=-1,此时r=1,圆的方程为(x-1)2

+(y+1)2=1

37.

38.

39.解:(1)直线l过A(0,2),B(-2,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论