版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023年高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
2、1若,则下列不等式不能成立的是( )ABCD2如图是甲、乙两位同学在六次数学小测试(满分100分)中得分情况的茎叶图,则下列说法错误的是( )A甲得分的平均数比乙大B甲得分的极差比乙大C甲得分的方差比乙小D甲得分的中位数和乙相等3中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,指数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“数”必须排在第三节,且“射”和“御”两门课程相邻排课,则“六艺”课程讲座不同的排课顺序共有( )A12种B24
3、种C36种D48种4已知a0,b0,a+b =1,若 =,则的最小值是( )A3B4C5D65已知等差数列的前项和为,则( )A25B32C35D406如图,在直三棱柱中,点分别是线段的中点,分别记二面角,的平面角为,则下列结论正确的是( )ABCD7若,则( )ABCD8已知是双曲线的左右焦点,过的直线与双曲线的两支分别交于两点(A在右支,B在左支)若为等边三角形,则双曲线的离心率为( )ABCD9如图,点E是正方体ABCD-A1B1C1D1的棱DD1的中点,点F,M分别在线段AC,BD1(不包含端点)上运动,则( )A在点F的运动过程中,存在EF/BC1B在点M的运动过程中,不存在B1MA
4、EC四面体EMAC的体积为定值D四面体FA1C1B的体积不为定值10已知实数,满足约束条件,则目标函数的最小值为ABCD11函数f(x)的图象大致为()ABCD12将函数的图像向左平移个单位得到函数的图像,则的最小值为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知、为正实数,直线截圆所得的弦长为,则的最小值为_.14已知函数为偶函数,则_.15已知,椭圆的方程为,双曲线方程为,与的离心率之积为,则的渐近线方程为_.16某部门全部员工参加一项社会公益活动,按年龄分为三组,其人数之比为,现用分层抽样的方法从总体中抽取一个容量为20的样本,若组中甲、乙二人均被抽到的概率是,则
5、该部门员工总人数为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,在四棱柱中,底面是正方形,平面平面,.过顶点,的平面与棱,分别交于,两点.()求证:;()求证:四边形是平行四边形;()若,试判断二面角的大小能否为?说明理由.18(12分)在平面直角坐标系中,已知椭圆的短轴长为,直线与椭圆相交于两点,线段的中点为.当与连线的斜率为时,直线的倾斜角为(1)求椭圆的标准方程;(2)若是以为直径的圆上的任意一点,求证:19(12分)如图中,为的中点,.(1)求边的长;(2)点在边上,若是的角平分线,求的面积.20(12分)已知函数,.(1)讨论的单调性;(2)若
6、存在两个极值点,证明:.21(12分)设椭圆的离心率为,左、右焦点分别为,点D在椭圆C上, 的周长为.(1)求椭圆C的标准方程;(2)过圆上任意一点P作圆E的切线l,若l与椭圆C交于A,B两点,O为坐标原点,求证:为定值.22(10分)已知椭圆:的离心率为,右焦点为抛物线的焦点.(1)求椭圆的标准方程;(2)为坐标原点,过作两条射线,分别交椭圆于、两点,若、斜率之积为,求证:的面积为定值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】根据不等式的性质对选项逐一判断即可.【详解】选项A:由于,即,所以,所以,所以成立;选
7、项B:由于,即,所以,所以,所以不成立;选项C:由于,所以,所以,所以成立;选项D:由于,所以,所以,所以,所以成立.故选:B.【点睛】本题考查不等关系和不等式,属于基础题.2B【解析】由平均数、方差公式和极差、中位数概念,可得所求结论【详解】对于甲,;对于乙,故正确;甲的极差为,乙的极差为,故错误;对于甲,方差.5,对于乙,方差,故正确;甲得分的中位数为,乙得分的中位数为,故正确故选:【点睛】本题考查茎叶图的应用,考查平均数和方差等概念,培养计算能力,意在考查学生对这些知识的理解掌握水平,属于基础题3C【解析】根据“数”排在第三节,则“射”和“御”两门课程相邻有3类排法,再考虑两者的顺序,有
8、种,剩余的3门全排列,即可求解.【详解】由题意,“数”排在第三节,则“射”和“御”两门课程相邻时,可排在第1节和第2节或第4节和第5节或第5节和第6节,有3种,再考虑两者的顺序,有种,剩余的3门全排列,安排在剩下的3个位置,有种,所以“六艺”课程讲座不同的排课顺序共有种不同的排法.故选:C.【点睛】本题主要考查了排列、组合的应用,其中解答中认真审题,根据题设条件,先排列有限制条件的元素是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.4C【解析】根据题意,将a、b代入,利用基本不等式求出最小值即可.【详解】a0,b0,a+b=1,当且仅当时取“”号答案:C【点睛】本题考查基本不等式
9、的应用,“1”的应用,利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是首先要判断参数是否为正;二定是其次要看和或积是否为定值(和定积最大,积定和最小);三相等是最后一定要验证等号能否成立,属于基础题.5C【解析】设出等差数列的首项和公差,即可根据题意列出两个方程,求出通项公式,从而求得【详解】设等差数列的首项为,公差为,则,解得,即有故选:C【点睛】本题主要考查等差数列的通项公式的求法和应用,涉及等差数列的前项和公式的应用,属于容易题6D【解析】过点作,以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法求解二面角的余弦值得答案【详解】解:因为,所以,即过
10、点作,以为原点,为轴,为轴,为轴,建立空间直角坐标系,则,0,0,1,设平面的法向量, 则,取,得,同理可求平面的法向量,平面的法向量,平面的法向量,故选:D【点睛】本题考查二面角的大小的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,属于中档题7C【解析】利用指数函数和对数函数的单调性比较、三个数与和的大小关系,进而可得出、三个数的大小关系.【详解】对数函数为上的增函数,则,即;指数函数为上的增函数,则;指数函数为上的减函数,则.综上所述,.故选:C.【点睛】本题考查指数幂与对数式的大小比较,一般利用指数函数和对数函数的单调性结合中间值法来比较,考查推理能力,属于基
11、础题.8D【解析】根据双曲线的定义可得的边长为,然后在中应用余弦定理得的等式,从而求得离心率【详解】由题意,又,在中,即,故选:D【点睛】本题考查求双曲线的离心率,解题关键是应用双曲线的定义把到两焦点距离用表示,然后用余弦定理建立关系式9C【解析】采用逐一验证法,根据线线、线面之间的关系以及四面体的体积公式,可得结果.【详解】A错误由平面,/而与平面相交,故可知与平面相交,所以不存在EF/BC1B错误,如图,作由又平面,所以平面又平面,所以由/,所以,平面所以平面,又平面所以,所以存在C正确四面体EMAC的体积为其中为点到平面的距离,由/,平面,平面所以/平面,则点到平面的距离即点到平面的距离
12、,所以为定值,故四面体EMAC的体积为定值错误由/,平面,平面所以/平面,则点到平面的距离即为点到平面的距离,所以为定值所以四面体FA1C1B的体积为定值故选:C【点睛】本题考查线面、线线之间的关系,考验分析能力以及逻辑推理能力,熟练线面垂直与平行的判定定理以及性质定理,中档题.10B【解析】作出不等式组对应的平面区域,目标函数的几何意义为动点到定点的斜率,利用数形结合即可得到的最小值【详解】解:作出不等式组对应的平面区域如图:目标函数的几何意义为动点到定点的斜率,当位于时,此时的斜率最小,此时故选B【点睛】本题主要考查线性规划的应用以及两点之间的斜率公式的计算,利用z的几何意义,通过数形结合
13、是解决本题的关键11D【解析】根据函数为非偶函数可排除两个选项,再根据特殊值可区分剩余两个选项.【详解】因为f(x)f(x)知f(x)的图象不关于y轴对称,排除选项B,C.又f(2)0.排除A,故选D.【点睛】本题主要考查了函数图象的对称性及特值法区分函数图象,属于中档题.12B【解析】根据三角函数的平移求出函数的解析式,结合三角函数的性质进行求解即可【详解】将函数的图象向左平移个单位,得到,此时与函数的图象重合,则,即,当时,取得最小值为,故选:【点睛】本题主要考查三角函数的图象和性质,利用三角函数的平移关系求出解析式是解决本题的关键二、填空题:本题共4小题,每小题5分,共20分。13【解析
14、】先根据弦长,半径,弦心距之间的关系列式求得,代入整理得,利用基本不等式求得最值.【详解】解:圆的圆心为,则到直线的距离为,由直线截圆所得的弦长为可得,整理得,解得或(舍去),令,又,当且仅当时,等号成立,则.故答案为:.【点睛】本题考查直线和圆的位置关系,考核基本不等式求最值,关键是对目标式进行变形,变成能用基本不等式求最值的形式,也可用换元法进行变形,是中档题.14【解析】根据偶函数的定义列方程,化简求得的值.【详解】由于为偶函数,所以,即,即,即,即,即,即,即,所以.故答案为:【点睛】本小题主要考查根据函数的奇偶性求参数,考查运算求解能力,属于中档题.15【解析】求出椭圆与双曲线的离心
15、率,根据离心率之积的关系,然后推出关系,即可求解双曲线的渐近线方程.【详解】,椭圆的方程为,的离心率为:,双曲线方程为,的离心率:,与的离心率之积为, 的渐近线方程为:,即.故答案为:【点睛】本题考查了椭圆、双曲线的几何性质,掌握椭圆、双曲线的离心率公式,属于基础题.1660【解析】根据样本容量及各组人数比,可求得C组中的人数;由组中甲、乙二人均被抽到的概率是可求得C组的总人数,即可由各组人数比求得总人数.【详解】三组人数之比为,现用分层抽样的方法从总体中抽取一个容量为20的样本,则三组抽取人数分别.设组有人,则组中甲、乙二人均被抽到的概率,解得.该部门员工总共有人.故答案为:60.【点睛】本
16、题考查了分层抽样的定义与简单应用,古典概型概率的简单应用,由各层人数求总人数的应用,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)证明见解析;(2)证明见解析;(3)不能为.【解析】(1)由平面平面,可得平面,从而证明;(2)由平面与平面没有交点,可得与不相交,又与共面,所以,同理可证,得证;(3)作交于点,延长交于点,连接,根据三垂线定理,确定二面角的平面角,若,由大角对大边知,两者矛盾,故二面角的大小不能为.【详解】(1)由平面平面,平面平面,且,所以平面,又平面,所以;(2)依题意都在平面上,因此平面,平面,又平面,平面,平面与平面平行,即两个平面没
17、有交点,则与不相交,又与共面,所以,同理可证,所以四边形是平行四边形;(3)不能.如图,作交于点,延长交于点,连接,由,所以平面,则平面,又,根据三垂线定理,得到,所以是二面角的平面角,若,则是等腰直角三角形,又,所以中,由大角对大边知,所以,这与上面相矛盾,所以二面角的大小不能为.【点睛】本题考查了立体几何中的线线平行和垂直的判定问题,和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,属中档题.18(1);(2)详见解析.【解析】(1)由短轴长可知,设,由设而不求法作差即可求得,将相应值代入即求得,椭圆方程可
18、求;(2)考虑特殊位置,即直线与轴垂直时候,成立,当直线斜率存在时,设出直线方程,与椭圆联立,结合中点坐标公式,弦长公式,得到与的关系,将表示出来,结合基本不等式求最值,证明最后的结果【详解】解:(1)由已知,得由,两式相减,得根据已知条件有,当时,即椭圆的标准方程为(2)当直线斜率不存在时,不等式成立.当直线斜率存在时,设由得,由化简,得令,则当且仅当时取等号当且仅当时取等号综上,【点睛】本题为直线与椭圆的综合应用,考查了椭圆方程的求法,点差法处理多未知量问题,能够利用一元二次方程的知识转化处理复杂的计算形式,要求学生计算能力过关,为较难题19(1)10;(2).【解析】(1)由题意可得co
19、sADBcosADC,由已知利用余弦定理可得:9+BD252+9+BD2160,进而解得BC的值(2)由(1)可知ADC为直角三角形,可求SADC6,SABC2SADC12,利用角平分线的性质可得,根据SABCSBCE+SACE可求SBCE的值【详解】(1)因为在边上,所以,在和中由余弦定理,得,因为,所以,所以,.所以边的长为10.(2)由(1)知为直角三角形,所以,.因为是的角平分线,所以.所以,所以.即的面积为.【点睛】本题主要考查了余弦定理,三角形的面积公式,角平分线的性质在解三角形中的综合应用,考查了转化思想和数形结合思想,属于中档题20(1)见解析;(2)见解析【解析】(1)求得的导函数,对分成两种情况,讨论的单调性.(2)由(1)判断出的取值范围,根据韦达定理求得的关系式,利用差比较法,计算,通过构造函数,利用导数证得,由此证得,进而证得不等式成立.【详解】(1).当时,此时在上单调递减;当时,由解得或,是增函数,此时在和单调递减,在单调递增.(2)由(1)知.,不妨设,令,在上是减函数,即.【点睛】本小题主要考查利用导数研究函数的单调区间,考查利用导
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年房地产市场调研报告合同
- 平移的教学反思6篇
- 幼儿园电的教案6篇
- 《秋天的树叶》教案6篇
- 水力学外出实习心得5篇
- 2024至2030年中国异径辐条行业投资前景及策略咨询研究报告
- 2024至2030年中国全铜高温电磁阀数据监测研究报告
- 2024至2030年铅圈项目投资价值分析报告
- 2024年中国白色陶瓷渔竿导环市场调查研究报告
- 2024至2030年塑料挤出门窗异型材生产线项目投资价值分析报告
- 2024年第九届“鹏程杯”六年级语文邀请赛试卷(复赛)
- 国开2024年《建筑结构#》形考作业1-4答案
- DL-T1475-2015电力安全工器具配置与存放技术要求
- 漏检分析改善措施
- 新制定《公平竞争审查条例》学习课件
- GB/T 44051-2024焊缝无损检测薄壁钢构件相控阵超声检测验收等级
- TD/T 1060-2021 自然资源分等定级通则(正式版)
- 完整加快发展新质生产力课件
- 三位数除以两位数300题-整除-有标准答案
- 办公室装修工程施工方案讲义
- 奇异的仿生学 知到智慧树网课答案
评论
0/150
提交评论