福建省莆田市2023学年高三下学期第一次联考数学试卷含解析_第1页
福建省莆田市2023学年高三下学期第一次联考数学试卷含解析_第2页
福建省莆田市2023学年高三下学期第一次联考数学试卷含解析_第3页
福建省莆田市2023学年高三下学期第一次联考数学试卷含解析_第4页
福建省莆田市2023学年高三下学期第一次联考数学试卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023年高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1某几何体的三视图如图所示,若侧视图和俯视图均是边长为的等边三角形,则该几何体的体积为ABCD2函数的定义域为( )A或B或CD3关于圆周率,数学发展史上出现过许多很有创意的求法,如著名的浦丰实验和查理斯实验受其启发,我们也可以通过设计下面的实验

2、来估计的值:先请全校名同学每人随机写下一个都小于的正实数对;再统计两数能与构成钝角三角形三边的数对的个数;最后再根据统计数估计的值,那么可以估计的值约为( )ABCD4已知抛物线上的点到其焦点的距离比点到轴的距离大,则抛物线的标准方程为( )ABCD5已知点(m,8)在幂函数的图象上,设,则( )AbacBabcCbcaDacb6设命题函数在上递增,命题在中,下列为真命题的是( )ABCD7为了进一步提升驾驶人交通安全文明意识,驾考新规要求驾校学员必须到街道路口执勤站岗,协助交警劝导交通.现有甲、乙等5名驾校学员按要求分配到三个不同的路口站岗,每个路口至少一人,且甲、乙在同一路口的分配方案共有

3、( )A12种B24种C36种D48种8从抛物线上一点 (点在轴上方)引抛物线准线的垂线,垂足为,且,设抛物线的焦点为,则直线的斜率为( )ABCD9关于圆周率,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验和查理斯实验.受其启发,某同学通过下面的随机模拟方法来估计的值:先用计算机产生个数对,其中,都是区间上的均匀随机数,再统计,能与构成锐角三角形三边长的数对的个数最后根据统计数来估计的值.若,则的估计值为( )ABCD10已知函数,若对任意,总存在,使得成立,则实数的取值范围为( )ABCD11若复数(为虚数单位)的实部与虚部相等,则的值为( )ABCD12过抛物线的焦点的直线与抛物

4、线交于、两点,且,抛物线的准线与轴交于,的面积为,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13在直角坐标系中,某等腰直角三角形的两个顶点坐标分别为,函数的图象经过该三角形的三个顶点,则的解析式为_.14已知a,b均为正数,且,的最小值为_.15现有5人要排成一排照相,其中甲与乙两人不相邻,且甲不站在两端,则不同的排法有_种.(用数字作答)16函数的定义域为,其图象如图所示函数是定义域为的奇函数,满足,且当时,给出下列三个结论: ;函数在内有且仅有个零点;不等式的解集为其中,正确结论的序号是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知

5、函数,曲线在点处的切线在y轴上的截距为.(1)求a;(2)讨论函数和的单调性;(3)设,求证:.18(12分)在四棱锥中,底面是平行四边形,底面(1)证明:;(2)求二面角的正弦值19(12分)如图所示,在四面体中,平面平面,且.(1)证明:平面;(2)设为棱的中点,当四面体的体积取得最大值时,求二面角的余弦值.20(12分)已知圆的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是是参数),若直线与圆相切,求实数的值.21(12分)已知函数.()当时,求不等式的解集;()若不等式对任意实数恒成立,求实数的取值范围.22(10分)如图,在正四棱锥

6、中,为上的四等分点,即(1)证明:平面平面;(2)求平面与平面所成锐二面角的余弦值参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】由三视图可知,该几何体是三棱锥,底面是边长为的等边三角形,三棱锥的高为,所以该几何体的体积,故选C2A【解析】根据偶次根式被开方数非负可得出关于的不等式,即可解得函数的定义域.【详解】由题意可得,解得或.因此,函数的定义域为或.故选:A.【点睛】本题考查具体函数定义域的求解,考查计算能力,属于基础题.3D【解析】由试验结果知对01之间的均匀随机数 ,满足,面积为1,再计算构成钝角三角形三边的数

7、对,满足条件的面积,由几何概型概率计算公式,得出所取的点在圆内的概率是圆的面积比正方形的面积,即可估计的值【详解】解:根据题意知,名同学取对都小于的正实数对,即,对应区域为边长为的正方形,其面积为,若两个正实数能与构成钝角三角形三边,则有,其面积;则有,解得故选:【点睛】本题考查线性规划可行域问题及随机模拟法求圆周率的几何概型应用问题. 线性规划可行域是一个封闭的图形,可以直接解出可行域的面积;求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到试验全部结果构成的平面图形,以便求解.4B【解析】由抛物线的定义转化,列出方程求出p,即可得

8、到抛物线方程【详解】由抛物线y22px(p0)上的点M到其焦点F的距离比点M到y轴的距离大,根据抛物线的定义可得,所以抛物线的标准方程为:y22x故选B【点睛】本题考查了抛物线的简单性质的应用,抛物线方程的求法,属于基础题5B【解析】先利用幂函数的定义求出m的值,得到幂函数解析式为f(x)x3,在R上单调递增,再利用幂函数f(x)的单调性,即可得到a,b,c的大小关系.【详解】由幂函数的定义可知,m11,m2,点(2,8)在幂函数f(x)xn上,2n8,n3,幂函数解析式为f(x)x3,在R上单调递增,1ln3,n3,abc,故选:B.【点睛】本题主要考查了幂函数的性质,以及利用函数的单调性比

9、较函数值大小,属于中档题.6C【解析】命题:函数在上单调递减,即可判断出真假命题:在中,利用余弦函数单调性判断出真假【详解】解:命题:函数,所以,当时,即函数在上单调递减,因此是假命题命题:在中,在上单调递减,所以,是真命题则下列命题为真命题的是故选:C【点睛】本题考查了函数的单调性、正弦定理、三角形边角大小关系、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题7C【解析】先将甲、乙两人看作一个整体,当作一个元素,再将这四个元素分成3个部分,每一个部分至少一个,再将这3部分分配到3个不同的路口,根据分步计数原理可得选项.【详解】把甲、乙两名交警看作一个整体,个人变成了4个元素,再把这4

10、个元素分成3部分,每部分至少有1个人,共有种方法,再把这3部分分到3个不同的路口,有种方法,由分步计数原理,共有种方案。故选:C.【点睛】本题主要考查排列与组合,常常运用捆绑法,插空法,先分组后分配等一些基本思想和方法解决问题,属于中档题.8A【解析】根据抛物线的性质求出点坐标和焦点坐标,进而求出点的坐标,代入斜率公式即可求解.【详解】设点的坐标为,由题意知,焦点,准线方程,所以,解得,把点代入抛物线方程可得,因为,所以,所以点坐标为,代入斜率公式可得,.故选:A【点睛】本题考查抛物线的性质,考查运算求解能力;属于基础题.9B【解析】先利用几何概型的概率计算公式算出,能与构成锐角三角形三边长的

11、概率,然后再利用随机模拟方法得到,能与构成锐角三角形三边长的概率,二者概率相等即可估计出.【详解】因为,都是区间上的均匀随机数,所以有,若,能与构成锐角三角形三边长,则,由几何概型的概率计算公式知,所以.故选:B.【点睛】本题考查几何概型的概率计算公式及运用随机数模拟法估计概率,考查学生的基本计算能力,是一个中档题.10C【解析】将函数解析式化简,并求得,根据当时可得的值域;由函数在上单调递减可得的值域,结合存在性成立问题满足的集合关系,即可求得的取值范围.【详解】依题意,则,当时,故函数在上单调递增,当时,;而函数在上单调递减,故,则只需,故,解得,故实数的取值范围为.故选:C.【点睛】本题

12、考查了导数在判断函数单调性中的应用,恒成立与存在性成立问题的综合应用,属于中档题.11C【解析】利用复数的除法,以及复数的基本概念求解即可.【详解】,又的实部与虚部相等,解得.故选:C【点睛】本题主要考查复数的除法运算,复数的概念运用.12B【解析】设点、,并设直线的方程为,由得,将直线的方程代入韦达定理,求得,结合的面积求得的值,结合焦点弦长公式可求得.【详解】设点、,并设直线的方程为,将直线的方程与抛物线方程联立,消去得,由韦达定理得,可得,抛物线的准线与轴交于,的面积为,解得,则抛物线的方程为,所以,.故选:B.【点睛】本题考查抛物线焦点弦长的计算,计算出抛物线的方程是解答的关键,考查计

13、算能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】结合题意先画出直角坐标系,点出所有可能组成等腰直角三角形的点,采用排除法最终可确定为点,再由函数性质进一步求解参数即可【详解】等腰直角三角形的第三个顶点可能的位置如下图中的点,其中点与已有的两个顶点横坐标重复,舍去;若为点则点与点的中间位置的点的纵坐标必然大于或小于,不可能为,因此点也舍去,只有点满足题意.此时点为最大值点,所以,又,则,所以点,之间的图像单调,将,代入的表达式有由知,因此.故答案为:【点睛】本题考查由三角函数图像求解解析式,数形结合思想,属于中档题14【解析】本题首先可以根据将化简为,然后根据基本

14、不等式即可求出最小值.【详解】因为,所以,当且仅当,即、时取等号,故答案为:.【点睛】本题考查根据基本不等式求最值,基本不等式公式为,在使用基本不等式的时候要注意“”成立的情况,考查化归与转化思想,是中档题.1536【解析】先优先考虑甲、乙两人不相邻的排法,在此条件下,计算甲不排在两端的排法,最后相减即可得到结果.【详解】由题意得5人排成一排,甲、乙两人不相邻,有种排法,其中甲排在两端,有种排法,则6人排成一排,甲、乙两人不相邻,且甲不排在两端,共有(种)排法.所以本题答案为36.【点睛】排列、组合问题由于其思想方法独特,计算量庞大,对结果的检验困难,所以在解决这类问题时就要遵循一定的解题原则

15、,如特殊元素、位置优先原则、先取后排原则、先分组后分配原则、正难则反原则等,只有这样我们才能有明确的解题方向.同时解答组合问题时必须心思细腻、考虑周全,这样才能做到不重不漏,正确解题.16【解析】利用奇函数和,得出函数的周期为,由图可直接判断;利用赋值法求得,结合,进而可判断函数在内的零点个数,可判断的正误;采用换元法,结合图象即可得解,可判断的正误.综合可得出结论.【详解】因为函数是奇函数,所以,又,所以,即,所以,函数的周期为.对于,由于函数是上的奇函数,所以,故正确;对于,令,可得,得,所以,函数在区间上的零点为和.因为函数的周期为,所以函数在内有个零点,分别是、,故错误;对于,令,则需

16、求的解集,由图象可知,所以,故正确.故答案为:.【点睛】本题考查函数的图象与性质,涉及奇偶性、周期性和零点等知识点,考查学生分析问题的能力和数形结合能力,属于中等题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1) (2)为减函数,为增函数. (3)证明见解析【解析】(1)求出导函数,求出切线方程,令得切线的纵截距,可得(必须利用函数的单调性求解);(2)求函数的导数,由导数的正负确定单调性;(3)不等式变形为,由递减,得(),即,即,依次放缩,不等式,递增得(),,先证,然后同样放缩得出结论【详解】解:(1)对求导,得.因此.又因为,所以曲线在点处的切线方程为,即.由题

17、意,.显然,适合上式.令,求导得,因此为增函数:故是唯一解.(2)由(1)可知,因为,所以为减函数.因为,所以为增函数.(3)证明:由,易得.由(2)可知,在上为减函数.因此,当时,即.令,得,即.因此,当时,.所以成立.下面证明:.由(2)可知,在上为增函数.因此,当时,即.因此,即.令,得,即.当时,.因为,所以,所以.所以,当时,.所以,当时,成立.综上所述,当时,成立.【点睛】本题考查导数的几何意义,考查用导数研究函数的单调性,考查用导数证明不等式本题中不等式的证明,考查了转化与化归的能力,把不等式变形后利用第(2)小题函数的单调性得出数列的不等关系:,这是最关键的一步然后一步一步放缩

18、即可证明本题属于困难题18(1)见解析(2)【解析】(1)利用正弦定理求得,由此得到,结合证得平面,由此证得.(2)建立空间直角坐标系,利用平面和平面的法向量,计算出二面角的余弦值,再转化为正弦值.【详解】(1)在中,由正弦定理可得:, ,底面,平面, ; (2)以为坐标原点建立如图所示的空间直角坐标系, 设平面的法向量为,由可得:,令,则, 设平面的法向量为,由可得:,令,则, 设二面角的平面角为,由图可知为钝角,则, ,故二面角的正弦值为.【点睛】本小题主要考查线线垂直的证明,考查空间向量法求二面角,考查空间想象能力和逻辑推理能力,属于中档题.19(1)见证明;(2)【解析】(1)根据面面

19、垂直的性质得到平面,从而得到,利用勾股定理得到,利用线面垂直的判定定理证得平面;(2)设,利用椎体的体积公式求得 ,利用导数研究函数的单调性,从而求得时,四面体的体积取得最大值,之后利用空间向量求得二面角的余弦值.【详解】(1)证明:因为,平面平面,平面平面,平面,所以平面,因为平面,所以.因为,所以,所以,因为,所以平面.(2)解:设,则,四面体的体积 . ,当时,单调递增;当时,单调递减.故当时,四面体的体积取得最大值.以为坐标原点,建立空间直角坐标系,则,.设平面的法向量为,则,即,令,得,同理可得平面的一个法向量为,则.由图可知,二面角为锐角,故二面角的余弦值为.【点睛】该题考查的是有关立体几何的问题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论