




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023年高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知定义在上的可导函数满足,若是奇函数,则不等式的解集是( )ABCD2记递增数列的前项和为.若,且对中的任意两项与(),其和,或其积,或其商仍是该数列中的项,则( )ABCD3阅
2、读名著,品味人生,是中华民族的优良传统.学生李华计划在高一年级每周星期一至星期五的每天阅读半个小时中国四大名著:红楼梦、三国演义、水浒传及西游记,其中每天阅读一种,每种至少阅读一次,则每周不同的阅读计划共有( )A120种B240种C480种D600种4已知四棱锥,底面ABCD是边长为1的正方形,平面平面ABCD,当点C到平面ABE的距离最大时,该四棱锥的体积为( )ABCD15如图,在ABC中,点M是边BC的中点,将ABM沿着AM翻折成ABM,且点B不在平面AMC内,点P是线段BC上一点.若二面角P-AM-B与二面角P-AM-C的平面角相等,则直线AP经过ABCA重心B垂心C内心D外心6函数
3、的图象为C,以下结论中正确的是( )图象C关于直线对称;图象C关于点对称;由y =2sin2x的图象向右平移个单位长度可以得到图象C.ABCD7函数与在上最多有n个交点,交点分别为(,n),则( )A7B8C9D108数列满足:,则数列前项的和为ABCD9设i是虚数单位,若复数()是纯虚数,则m的值为( )ABC1D310设是两条不同的直线,是两个不同的平面,下列命题中正确的是()A若,则B若,,则C若,则D若,则11点是单位圆上不同的三点,线段与线段交于圆内一点M,若,则的最小值为( ) ABCD12已知,是平面内三个单位向量,若,则的最小值( )ABCD5二、填空题:本题共4小题,每小题5
4、分,共20分。13已知,的夹角为30,则_.14在边长为2的正三角形中,则的取值范围为_.15如图,在棱长为2的正方体中,点、分别是棱,的中点,是侧面正方形内一点(含边界),若平面,则线段长度的取值范围是_.16在二项式的展开式中,的系数为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图是圆的直径,垂直于圆所在的平面,为圆周上不同于的任意一点(1)求证:平面平面;(2)设为的中点,为上的动点(不与重合)求二面角的正切值的最小值18(12分)中国古代数学经典数书九章中,将底面为矩形且有一条侧棱与底面垂直的四棱锥称为“阳马”,将四个面都为直角三角形的四面体称之为
5、“鳖臑”.在如图所示的阳马中,底面ABCD是矩形.平面,以的中点O为球心,AC为直径的球面交PD于M(异于点D),交PC于N(异于点C).(1)证明:平面,并判断四面体MCDA是否是鳖臑,若是,写出它每个面的直角(只需写出结论);若不是,请说明理由;(2)求直线与平面所成角的正弦值.19(12分)已知;.(1)若为真命题,求实数的取值范围;(2)若为真命题且为假命题,求实数的取值范围.20(12分)已知函数(1)若对任意恒成立,求实数的取值范围;(2)求证: 21(12分)如图1,在等腰梯形中,两腰,底边,是的三等分点,是的中点.分别沿,将四边形和折起,使,重合于点,得到如图2所示的几何体.在
6、图2中,分别为,的中点.(1)证明:平面.(2)求直线与平面所成角的正弦值.22(10分)已知矩阵,二阶矩阵满足.(1)求矩阵;(2)求矩阵的特征值参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1A【解析】构造函数,根据已知条件判断出的单调性.根据是奇函数,求得的值,由此化简不等式求得不等式的解集.【详解】构造函数,依题意可知,所以在上递增.由于是奇函数,所以当时,所以,所以.由得,所以,故不等式的解集为.故选:A【点睛】本小题主要考查构造函数法解不等式,考查利用导数研究函数的单调性,考查化归与转化的数学思想方法,属于中档题.2D
7、【解析】由题意可得,从而得到,再由就可以得出其它各项的值,进而判断出的范围【详解】解:,或其积,或其商仍是该数列中的项,或者或者是该数列中的项,又数列是递增数列,只有是该数列中的项,同理可以得到,也是该数列中的项,且有,或(舍,根据,同理易得,故选:D【点睛】本题考查数列的新定义的理解和运用,以及运算能力和推理能力,属于中档题3B【解析】首先将五天进行分组,再对名著进行分配,根据分步乘法计数原理求得结果.【详解】将周一至周五分为组,每组至少天,共有:种分组方法;将四大名著安排到组中,每组种名著,共有:种分配方法;由分步乘法计数原理可得不同的阅读计划共有:种本题正确选项:【点睛】本题考查排列组合
8、中的分组分配问题,涉及到分步乘法计数原理的应用,易错点是忽略分组中涉及到的平均分组问题.4B【解析】过点E作,垂足为H,过H作,垂足为F,连接EF.因为平面ABE,所以点C到平面ABE的距离等于点H到平面ABE的距离.设,将表示成关于的函数,再求函数的最值,即可得答案.【详解】过点E作,垂足为H,过H作,垂足为F,连接EF.因为平面平面ABCD,所以平面ABCD,所以.因为底面ABCD是边长为1的正方形,所以.因为平面ABE,所以点C到平面ABE的距离等于点H到平面ABE的距离.易证平面平面ABE,所以点H到平面ABE的距离,即为H到EF的距离.不妨设,则,.因为,所以,所以,当时,等号成立.
9、此时EH与ED重合,所以,.故选:B.【点睛】本题考查空间中点到面的距离的最值,考查函数与方程思想、转化与化归思想,考查空间想象能力和运算求解能力,求解时注意辅助线及面面垂直的应用.5A【解析】根据题意P到两个平面的距离相等,根据等体积法得到SPBM【详解】二面角P-AM-B与二面角P-AM-C的平面角相等,故P到两个平面的距离相等.故VP-ABM=VP-ACM,即故BP=CP,故P为CB中点.故选:A.【点睛】本题考查了二面角,等体积法,意在考查学生的计算能力和空间想象能力.6B【解析】根据三角函数的对称轴、对称中心和图象变换的知识,判断出正确的结论.【详解】因为,又,所以正确.,所以正确.
10、将的图象向右平移个单位长度,得,所以错误.所以正确,错误.故选:B【点睛】本小题主要考查三角函数的对称轴、对称中心,考查三角函数图象变换,属于基础题.7C【解析】根据直线过定点,采用数形结合,可得最多交点个数, 然后利用对称性,可得结果.【详解】由题可知:直线过定点且在是关于对称如图通过图像可知:直线与最多有9个交点同时点左、右边各四个交点关于对称所以故选:C【点睛】本题考查函数对称性的应用,数形结合,难点在于正确画出图像,同时掌握基础函数的性质,属难题.8A【解析】分析:通过对anan+1=2anan+1变形可知,进而可知,利用裂项相消法求和即可详解:,又=5,即,数列前项的和为,故选A点睛
11、:裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1);(2) ; (3);(4) ;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.9A【解析】根据复数除法运算化简,结合纯虚数定义即可求得m的值.【详解】由复数的除法运算化简可得,因为是纯虚数,所以,故选:A.【点睛】本题考查了复数的概念和除法运算,属于基础题.10C【解析】在A中,与相交或平行;在B中,或;在C中,由线面垂直的判定定理得;在D中,与平行或【详解】设是两条不同的直线,是两个不同的平面,则:在A中,若,则与相交或平行,故A错
12、误;在B中,若,则或,故B错误;在C中,若,则由线面垂直的判定定理得,故C正确;在D中,若,则与平行或,故D错误故选C【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,是中档题11D【解析】由题意得,再利用基本不等式即可求解【详解】将平方得,(当且仅当时等号成立),的最小值为,故选:D【点睛】本题主要考查平面向量数量积的应用,考查基本不等式的应用,属于中档题12A【解析】由于,且为单位向量,所以可令,再设出单位向量的坐标,再将坐标代入中,利用两点间的距离的几何意义可求出结果【详解】解:设,则,从而,等号可取到故选:A【点睛】此题考查的是平面向量的坐标、模的运算,
13、利用整体代换,再结合距离公式求解,属于难题二、填空题:本题共4小题,每小题5分,共20分。131【解析】由求出,代入,进行数量积的运算即得.【详解】,存在实数,使得.不共线,.,的夹角为30,.故答案为:1.【点睛】本题考查向量共线定理和平面向量数量积的运算,属于基础题.14【解析】建立直角坐标系,依题意可求得,而,故可得,且,由此构造函数,利用二次函数的性质即可求得取值范围【详解】建立如图所示的平面直角坐标系,则,设,根据,即,则,即,则,所以,且,故,设,易知二次函数的对称轴为,故函数在,上的最大值为,最小值为,故的取值范围为故答案为:【点睛】本题考查平面向量数量积的坐标运算,考查函数与方
14、程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意通过设元、消元,将问题转化为元二次函数的值域问题15【解析】取中点,连结,推导出平面平面,从而点在线段上运动,作于,由,能求出线段长度的取值范围【详解】取中点,连结,在棱长为2的正方体中,点、分别是棱、的中点,平面平面,是侧面正方形内一点(含边界),平面,点在线段上运动,在等腰中,作于,由等面积法解得:,线段长度的取值范围是,故答案为:,【点睛】本题考查线段长的取值范围的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题1660【解析】直接利用二项式定理计算得到答案.【详解】二项式的展开式通项为:
15、,取,则的系数为.故答案为:.【点睛】本题考查了二项式定理,意在考查学生的计算能力和应用能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)见解析(2)【解析】(1)推导出,从而平面,由面面垂直的判定定理即可得证(2)过作,以为坐标原点,建立如图所示空间坐标系,设,利用空间向量法表示出二面角的余弦值,当余弦值取得最大时,正切值求得最小值;【详解】(1)因为,面,平面,平面,平面,又平面,平面平面;(2)过作,以为坐标原点,建立如图所示空间坐标系,则,设,则平面的一个法向量为设平面的一个法向量为则,即,令,如图二面角的平面角为锐角,设二面角为,则,时取得最大值,最大值为
16、,则最小值为【点睛】本题考查面面垂直的证明,利用空间向量法解决立体几何问题,属于中档题.18(1)证明见解析,是,;(2)【解析】(1)根据是球的直径,则,又平面, 得到,再由线面垂直的判定定理得到平面,进而得到,再利用线面垂直的判定定理得到平面.(2)以A为原点,所在直线为x,y,z轴建立直角坐标系,设,由,解得,得到,从而得到,然后求得平面的一个法向量,代入公式求解.【详解】(1)因为是球的直径,则,又平面, ,.平面,平面.根据证明可知,四面体是鳖臑. 它的每个面的直角分别是,. (2)如图,以A为原点,所在直线为x,y,z轴建立直角坐标系,则,. M为中点,从而.所以,设,则. 由,得
17、.由得,即.所以. 设平面的一个法向量为. 由.取,得到.记与平面所成角为,则.所以直线与平面所成的角的正弦值为.【点睛】本题主要考查线面垂直的判定定理和线面角的向量求法,还考查了转化化归的思想和运算求解的能力,属于中档题.19(1) (2)或【解析】(1)根据为真命题列出不等式,进而求得实数的取值范围;(2)应用复合命题真假判定的口诀:真“非”假,假“非”真,一真“或”为真,两真“且”才真.【详解】(1),且,解得所以当为真命题时,实数的取值范围是.(2)由,可得,又当时,.当为真命题,且为假命题时,与的真假性相同,当假假时,有,解得;当真真时,有,解得;故当为真命题且为假命题时,可得或.【
18、点睛】本题主要考查结合不等式的含有量词的命题的恒成立问题,存在性问题,考查复合命题的真假判断,意在考查学生对这些知识的掌握水平和分析推理能力.20(1);(2)见解析.【解析】(1)将问题转化为对任意恒成立,换元构造新函数即可得解;(2)结合(1)可得,令,求导后证明其导函数单调递增,结合,即可得函数的单调区间和最小值,即可得证.【详解】(1)对任意恒成立等价于对任意恒成立,令,则,当时,单调递增;当时,单调递减;有最大值,.(2)证明:由(1)知,当时,即,令,则,令,则,在上是增函数,又,当时,;当时,在上是减函数,在上是增函数,即,【点睛】本题考查了利用导数解决恒成立问题,考查了利用导数证明不等式,考查了计算能力和转化化归思想,属于中档题.21(1)证明见解析 (2)【解析】(1)先证,再证,由可得平面 ,从而推出平面 ;(2) 建立空间直角坐标系,求出平面的法向量与,坐标代入线面角的正弦值公式即可得解.【详解】(1)证明:连接,由图1知,四边形为菱形,且,所以是正三角形,从而.同理可证,所以平面.又,所以平面,因为平面,所以平面平面.易知,且为的中点,所以,所以平面.(2)解:由(1)可知,且四边形为正方形.设的中点为,以为原点,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 植物油精炼节能减排机理-全面剖析
- 西安钟鼓楼博物馆讲解员招聘真题2024
- 基于多源数据的用户意图理解与预测-全面剖析
- 森林旅游对森林生态的影响-全面剖析
- 大数据在电商个性化服务中的应用-全面剖析
- 目录语义关联聚类-全面剖析
- 2025年安全生产风险分级管控与事故预防考试试题
- 智能康复设备研发-第2篇-全面剖析
- 国际贸易中的贸易政策对全球经济的影响论文
- 健康大数据应用研究-全面剖析
- 创造性思维与创新方法Triz版知到章节答案智慧树2023年大连理工大学
- 英语四级仔细阅读练习与答案解析
- 《产业基础创新发展目录(2021年版)》(8.5发布)
- 排水沟土方开挖施工方案
- CAD教程CAD基础教程自学入门教程课件
- 技术合同认定登记培训课件
- 停水停电时的应急预案及处理流程
- 电商部运营助理月度绩效考核表
- DB61∕T 1230-2019 人民防空工程防护设备安装技术规程 第1部分:人防门
- 第12课送你一个书签
- 教学课件:《特种加工(第6版)
评论
0/150
提交评论