版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023年高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知抛物线的焦点为,准线为,是上一点,是直线与抛物线的一个交点,若,则( )AB3CD22已知函数,若存在实数,使成立,则正数的取值范围为()ABCD3从装有除颜色外完全相同的3个白球和个黑球的布袋中随机摸取一球,有放回的摸取5次,设摸得白球数
2、为,已知,则ABCD4若,则下列关系式正确的个数是( ) A1B2C3D45下列说法正确的是( )A命题“,”的否定形式是“,”B若平面,满足,则C随机变量服从正态分布(),若,则D设是实数,“”是“”的充分不必要条件6设函数,则使得成立的的取值范围是( )ABCD7已知函数,则的值等于( )A2018B1009C1010D20208一个正三棱柱的正(主)视图如图,则该正三棱柱的侧面积是( )A16B12C8D69函数(且)的图象可能为( )ABCD10如图,在三棱锥中,平面,分别是棱,的中点,则异面直线与所成角的余弦值为A0BCD111复数满足,则复数等于()ABC2D-212点为的三条中线
3、的交点,且,则的值为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13设第一象限内的点(x,y)满足约束条件,若目标函数zaxby(a0,b0)的最大值为40,则的最小值为_.14已知数列的各项均为正数,记为的前n项和,若,则_.15已知实数,满足则的取值范围是_.16设实数,满足,则的最大值是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在中, .求边上的高.,这三个条件中任选一个,补充在上面问题中并作答.18(12分)在直角坐标系中,曲线的参数方程为(为参数),将曲线上各点纵坐标伸长到原来的2倍(横坐标不变)得到曲线,以坐标原点为极点,轴正
4、半轴为极轴,建立极坐标系,直线的极坐标方程为.(1)写出的极坐标方程与直线的直角坐标方程;(2)曲线上是否存在不同的两点,(以上两点坐标均为极坐标,),使点、到的距离都为3?若存在,求的值;若不存在,请说明理由.19(12分)已知函数,(1)当时,讨论函数的单调性;(2)若,当时,函数,求函数的最小值20(12分)某公司为了鼓励运动提高所有用户的身体素质,特推出一款运动计步数的软件,所有用户都可以通过每天累计的步数瓜分红包,大大增加了用户走步的积极性,所以该软件深受广大用户的欢迎.该公司为了研究“日平均走步数和性别是否有关”,统计了2019年1月份所有用户的日平均步数,规定日平均步数不少于80
5、00的为“运动达人”,步数在8000以下的为“非运动达人”,采用按性别分层抽样的方式抽取了100个用户,得到如下列联表:运动达人非运动达人总计男3560女26总计100(1)(i)将列联表补充完整;(ii)据此列联表判断,能否有的把握认为“日平均走步数和性别是否有关”?(2)将频率视作概率,从该公司的所有人“运动达人”中任意抽取3个用户,求抽取的用户中女用户人数的分布列及期望.附:21(12分)某中学的甲、乙、丙三名同学参加高校自主招生考试,每位同学彼此独立的从五所高校中任选2所(1)求甲、乙、丙三名同学都选高校的概率;(2)若已知甲同学特别喜欢高校,他必选校,另在四校中再随机选1所;而同学乙
6、和丙对五所高校没有偏爱,因此他们每人在五所高校中随机选2所(i)求甲同学选高校且乙、丙都未选高校的概率;(ii)记为甲、乙、丙三名同学中选高校的人数,求随机变量的分布列及数学期望22(10分)已知函数(1)当时,求不等式的解集;(2)的图象与两坐标轴的交点分别为,若三角形的面积大于,求参数的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解析】根据抛物线的定义求得,由此求得的长.【详解】过作,垂足为,设与轴的交点为.根据抛物线的定义可知.由于,所以,所以,所以,所以.故选:D【点睛】本小题主要考查抛物线的定义,考查数
7、形结合的数学思想方法,属于基础题.2A【解析】根据实数满足的等量关系,代入后将方程变形,构造函数,并由导函数求得的最大值;由基本不等式可求得的最小值,结合存在性问题的求法,即可求得正数的取值范围.【详解】函数,由题意得,即,令,在上单调递增,在上单调递减,而,当且仅当,即当时,等号成立,.故选:A.【点睛】本题考查了导数在求函数最值中的应用,由基本不等式求函数的最值,存在性成立问题的解法,属于中档题.3B【解析】由题意知,由,知,由此能求出【详解】由题意知,解得,故选:B【点睛】本题考查离散型随机变量的方差的求法,解题时要认真审题,仔细解答,注意二项分布的灵活运用4D【解析】a,b可看成是与和
8、交点的横坐标,画出图象,数形结合处理.【详解】令,作出图象如图,由,的图象可知,正确;,有,正确;,有,正确;,有,正确.故选:D.【点睛】本题考查利用函数图象比较大小,考查学生数形结合的思想,是一道中档题.5D【解析】由特称命题的否定是全称命题可判断选项A;可能相交,可判断B选项;利用正态分布的性质可判断选项C;或,利用集合间的包含关系可判断选项D.【详解】命题“,”的否定形式是“,”,故A错误;,则可能相交,故B错误;若,则,所以,故,所以C错误;由,得或,故“”是“”的充分不必要条件,D正确.故选:D.【点睛】本题考查命题的真假判断,涉及到特称命题的否定、面面相关的命题、正态分布、充分条
9、件与必要条件等,是一道容易题.6B【解析】由奇偶性定义可判断出为偶函数,由单调性的性质可知在上单调递增,由此知在上单调递减,从而将所求不等式化为,解绝对值不等式求得结果.【详解】由题意知:定义域为,为偶函数,当时,在上单调递增,在上单调递减,在上单调递增,则在上单调递减,由得:,解得:或,的取值范围为.故选:.【点睛】本题考查利用函数的单调性和奇偶性求解函数不等式的问题;奇偶性的作用是能够确定对称区间的单调性,单调性的作用是能够将函数值的大小关系转化为自变量的大小关系,进而化简不等式.7C【解析】首先,根据二倍角公式和辅助角公式化简函数解析式,根据所求函数的周期性,得到其周期为4,然后借助于三
10、角函数的周期性确定其值即可【详解】解: ,的周期为, ,故选:C【点睛】本题重点考查了三角函数的图象与性质、三角恒等变换等知识,掌握辅助角公式化简函数解析式是解题的关键,属于中档题8B【解析】根据正三棱柱的主视图,以及长度,可知该几何体的底面正三角形的边长,然后根据矩形的面积公式,可得结果.【详解】由题可知:该几何体的底面正三角形的边长为2所以该正三棱柱的三个侧面均为边长为2的正方形,所以该正三棱柱的侧面积为故选:B【点睛】本题考查正三棱柱侧面积的计算以及三视图的认识,关键在于求得底面正三角形的边长,掌握一些常见的几何体的三视图,比如:三棱锥,圆锥,圆柱等,属基础题.9D【解析】因为,故函数是
11、奇函数,所以排除A,B;取,则,故选D.考点:1.函数的基本性质;2.函数的图象.10B【解析】根据题意可得平面,则即异面直线与所成的角,连接CG,在中,易得,所以,所以,故选B11B【解析】通过复数的模以及复数的代数形式混合运算,化简求解即可.【详解】复数满足,故选B.【点睛】本题主要考查复数的基本运算,复数模长的概念,属于基础题12B【解析】可画出图形,根据条件可得,从而可解出,然后根据,进行数量积的运算即可求出【详解】如图:点为的三条中线的交点,由可得:,又因,.故选:B【点睛】本题考查三角形重心的定义及性质,向量加法的平行四边形法则,向量加法、减法和数乘的几何意义,向量的数乘运算及向量
12、的数量积的运算,考查运算求解能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】不等式表示的平面区域阴影部分,当直线ax+by=z(a0,b0)过直线xy+2=0与直线2xy6=0的交点(8,10)时,目标函数z=ax+by(a0,b0)取得最大40,即8a+10b=40,即4a+5b=20,而当且仅当时取等号,则的最小值为.14127【解析】已知条件化简可化为,等式两边同时除以,则有 ,通过求解方程可解得,即证得数列为等比数列,根据已知即可解得所求.【详解】由.故答案为:.【点睛】本题考查通过递推公式证明数列为等比数列,考查了等比的求和公式,考查学生分析问题的能力,
13、难度较易.15【解析】根据约束条件画出可行域,即可由直线的平移方法求得的取值范围.【详解】.由题意,画出约束条件表示的平面区域如下图所示,令,则如图所示,图中直线所示的两个位置为的临界位置,根据几何关系可得与轴的两个交点分别为,所以的取值范围为.故答案为:【点睛】本题考查了非线性约束条件下线性规划的简单应用,由数形结合法求线性目标函数的取值范围,属于中档题.161【解析】根据目标函数的解析式形式,分析目标函数的几何意义,然后判断求出目标函数取得最优解的点的坐标,即可求解【详解】作出实数,满足表示的平面区域,如图所示:由可得,则表示直线在轴上的截距,截距越小,越大.由可得,此时最大为1,故答案为
14、:1【点睛】本题主要考查线性规划知识的运用,考查学生的计算能力,考查数形结合的数学思想三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17详见解析【解析】选择,利用正弦定理求得,利用余弦定理求得,再计算边上的高.选择,利用正弦定理得出,由余弦定理求出,再求边上的高.选择,利用余弦定理列方程求出,再计算边上的高.【详解】选择,在中,由正弦定理得,即,解得;由余弦定理得,即,化简得,解得或(舍去);所以边上的高为.选择,在中,由正弦定理得,又因为,所以,即;由余弦定理得,即,化简得,解得或(舍去);所以边上的高为.选择,在中,由,得;由余弦定理得,即,化简得,解得或(舍去);所以边上
15、的高为.【点睛】本小题主要考查真闲的了、余弦定理解三角形,属于中档题.18(1),(2)存在,【解析】(1)先求得曲线的普通方程,利用伸缩变换的知识求得曲线的直角坐标方程,再转化为极坐标方程.根据极坐标和直角坐标转化公式,求得直线的直角坐标方程.(2)求得曲线的圆心和半径,计算出圆心到直线的距离,结合图像判断出存在符合题意,并求得的值.【详解】(1)曲线的普通方程为,纵坐标伸长到原来的2倍,得到曲线的直角坐标方程为,其极坐标方程为,直线的直角坐标方程为.(2)曲线是以为圆心,为半径的圆,圆心到直线的距离.由图像可知,存在这样的点,则,且点到直线的距离,.【点睛】本小题主要考查坐标变换,考查直线
16、和圆的位置关系,考查极坐标方程和直角坐标方程相互转化,考查参数方程化为普通方程,考查数形结合的数学思想方法,属于中档题.19(1)见解析 (2)的最小值为【解析】(1)由题可得函数的定义域为,当时,令,可得;令,可得,所以函数在上单调递增,在上单调递减; 当时,令,可得;令,可得或,所以函数在,上单调递增,在上单调递减;当时,恒成立,所以函数在上单调递增 综上,当时,函数在上单调递增,在上单调递减;当时,函数在,上单调递增,在上单调递减;当时,函数在上单调递增 (2)方法一:当时,设,则,所以函数在上单调递减,所以,当且仅当时取等号当时,设,则,所以,设,则,所以函数在上单调递减,且,所以存在
17、,使得,所以当时,;当时, 所以函数在上单调递增,在上单调递减,因为,所以,所以,当且仅当时取等号所以当时,函数取得最小值,且,故函数的最小值为 方法二:当时,则,令,则,所以函数在上单调递增, 又,所以存在,使得,所以函数在上单调递减,在上单调递增, 因为,所以当时,恒成立,所以当时,恒成立,所以函数在上单调递减,所以函数的最小值为20(1)(i)填表见解析(ii)没有的把握认为“日平均走步数和性别是否有关”(2)详见解析【解析】(1)(i)由已给数据可完成列联表,(ii)计算出后可得;(2)由列联表知从运动达人中抽取1个用户为女用户的概率为,的取值为,由二项分布概率公式计算出各概率得分布列
18、,由期望公式计算期望【详解】解(1)(i)运动达人非运动达人总计男352560女142640总计4951100(ii)由列联表得所以没有的把握认为“日平均走步数和性别是否有关”(2)由列联表知从运动达人中抽取1个用户为女用户的概率为,.易知所以的分布列为0123【点睛】本题考查列联表,考查独立性检验,考查随机变量的概率分布列和期望属于中档题本题难点在于认识到21(1) (2)(i)(ii)分布列见解析,【解析】(1)先计算甲、乙、丙同学分别选择D高校的概率,利用事件的独立性即得解;(2)(i)分别计算每个事件的概率,再利用事件的独立性即得解;(ii),利用事件的独立性,分别计算对应的概率,列出分布列,计算数学期望即得解.【详解】(1)甲从五所高校中任选2所,共有共10种情况,甲、乙、丙同学都选高校,共有四种情况,甲同学选高校的概率为,因此乙、丙两同学选高校的概率为,因为每位同学彼此独立,所以甲、乙、丙三名同学都选高校的概率为(2)(i)甲同学必选校且选高校的概率为,乙未选高校的概率为,丙未选高校的概率为,因为每位同学彼此独立,所以甲同学选高校且乙、丙都未选高校的概率为(ii),因此,即的分布列为0123因此数学期望为【点睛】本题考查了事件独立性的应用和随机变量的分布列和
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 碧桂园地产项目十里银滩项目汇报
- 上颌骨骨折患者护理
- 华为物流成本管理
- 《光学实验理论》课件
- 《公共关系学袁》课件
- 三位数乘两位数同步考核题带答案
- 完全胃肠外营养护理
- 个人来年工作规划
- 言语治疗技术儿童语言发育迟缓概念及病因
- 第1讲物质组成与分类-高考化学二轮总复习习题
- 实用针灸学-经络养生与康复-暨南大学中国大学mooc课后章节答案期末考试题库2023年
- 入团志愿书(2016版本)(可编辑打印标准A4) (1)
- 基于PLC及温度控制系统设计
- 地块颜色标准
- 106kW水冷式管壳冷凝器 设计说明书
- 宝石类采样规范手册
- 航海模型教学设计和计划
- 第三方安全检查报告模板
- 公司内部市场化实施方案
- 浙江省公路山岭隧道机械化装备应用指导手册
- 医师定期考核简易程序练习及答案
评论
0/150
提交评论