![湖南省湘西2021-2022学年中考联考数学试卷含解析_第1页](http://file4.renrendoc.com/view/e0cd15c35251abe6f10ff4ebce5afe88/e0cd15c35251abe6f10ff4ebce5afe881.gif)
![湖南省湘西2021-2022学年中考联考数学试卷含解析_第2页](http://file4.renrendoc.com/view/e0cd15c35251abe6f10ff4ebce5afe88/e0cd15c35251abe6f10ff4ebce5afe882.gif)
![湖南省湘西2021-2022学年中考联考数学试卷含解析_第3页](http://file4.renrendoc.com/view/e0cd15c35251abe6f10ff4ebce5afe88/e0cd15c35251abe6f10ff4ebce5afe883.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1如图,半径为1的圆O1与半径为3的圆O2相内切,如果半径为2的圆与圆O1和圆O2都相切,那么这样的圆的个数是 ( )A1B2C3D42如图,ABC 中,AD 是中线,BC=8,B=DAC,则线段 AC 的长为( )A4B4C6D43若在同
2、一直角坐标系中,正比例函数yk1x与反比例函数y的图象无交点,则有()Ak1k20Bk1k20Ck1k20Dk1k204如图,是一个工件的三视图,则此工件的全面积是()A60cm2B90cm2C96cm2D120cm25若ABC与DEF相似,相似比为2:3,则这两个三角形的面积比为( )A2:3B3:2C4:9D9:46统计学校排球队员的年龄,发现有12、13、14、15等四种年龄,统计结果如下表:年龄(岁)12131415人数(个)2468根据表中信息可以判断该排球队员年龄的平均数、众数、中位数分别为( )A13、15、14B14、15、14C13.5、15、14D15、15、157下列各数
3、中,比1大1的是()A0 B1 C2 D38如图是反比例函数(k为常数,k0)的图象,则一次函数的图象大致是( )ABCD9如图,在ABC中,CDAB于点D,E,F分别为AC,BC的中点,AB=10,BC=8,DE=4.5,则DEF的周长是()A9.5B13.5C14.5D1710二次函数yax2+bx+c(a0)和正比例函数yx的图象如图所示,则方程ax2+(b+ )x+c0(a0)的两根之和()A大于0B等于0C小于0D不能确定二、填空题(本大题共6个小题,每小题3分,共18分)11规定:,如:,若,则_.12已知x=2是一元二次方程x22mx+4=0的一个解, 则m的值为 13若两个相似
4、三角形的面积比为14,则这两个相似三角形的周长比是_14已知一粒米的质量是1111121千克,这个数字用科学记数法表示为_15如图,扇形的半径为,圆心角为120,用这个扇形围成一个圆锥的侧面,所得的圆锥的高为 _ .16已知一组数据,2,3,1,6的中位数为1,则其方差为_三、解答题(共8题,共72分)17(8分)如图,在四边形ABCD中,ABC=90,CAB=30,DEAC于E,且AE=CE,若DE=5,EB=12,求四边形ABCD的周长18(8分)如图,已知AOB=45,ABOB,OB=1(1)利用尺规作图:过点M作直线MNOB交AB于点N(不写作法,保留作图痕迹);(1)若M为AO的中点
5、,求AM的长19(8分)如图,AB、AD是O的弦,ABC是等腰直角三角形,ADCAEB,请仅用无刻度直尺作图:在图1中作出圆心O;在图2中过点B作BFAC20(8分)咸宁市某中学为了解本校学生对新闻、体育、动画、娱乐四类电视节目的喜爱情况,随机抽取了部分学生进行问卷调查,根据调查结果绘制了如下图所示的两幅不完整统计图,请你根据图中信息解答下列问题: = 1 * GB2 补全条形统计图,“体育”对应扇形的圆心角是 度; = 2 * GB2 根据以上统计分析,估计该校名学生中喜爱“娱乐”的有 人; = 3 * GB2 在此次问卷调查中,甲、乙两班分别有人喜爱新闻节目,若从这人中随机抽取人去参加“新
6、闻小记者”培训,请用列表法或者画树状图的方法求所抽取的人来自不同班级的概率21(8分)如图1,抛物线yax2+(a+2)x+2(a0),与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点P(m,0)(0m4),过点P作x轴的垂线交直线AB于点N,交抛物线于点M(1)求抛物线的解析式;(2)若PN:PM1:4,求m的值;(3)如图2,在(2)的条件下,设动点P对应的位置是P1,将线段OP1绕点O逆时针旋转得到OP2,旋转角为(090),连接AP2、BP2,求AP2+的最小值22(10分)如图,数轴上的点A、B、C、D、E表示连续的五个整数,对应数分别为a、b、c、d、e(1)若a+e=0
7、,则代数式b+c+d=;(2)若a是最小的正整数,先化简,再求值:a+1a-2(3)若a+b+c+d=2,数轴上的点M表示的实数为m(m与a、b、c、d、e不同),且满足MA+MD=3,则m的范围是23(12分)已知:不等式2+x(1)求不等式的解;(2)若实数a满足a2,说明a是否是该不等式的解24随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图(1)本次调查的学生共有 人,估计该校1200名学生中“不了解”的人数是 人;(2)“
8、非常了解”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】分析:过O1、O2作直线,以O1O2上一点为圆心作一半径为2的圆,将这个圆从左侧与圆O1、圆O2同时外切的位置(即圆O3)开始向右平移,观察图形,并结合三个圆的半径进行分析即可得到符合要求的圆的个数.详解:如下图,(1)当半径为2的圆同时和圆O1、圆O2外切时,该圆在圆O3的位置;(2)当半径为2的圆和圆O1、圆O2都内切时,该圆在圆O4的位置;(3)当半径为2的圆和圆O1外切,而和
9、圆O2内切时,该圆在圆O5的位置;综上所述,符合要求的半径为2的圆共有3个.故选C.点睛:保持圆O1、圆O2的位置不动,以直线O1O2上一个点为圆心作一个半径为2的圆,观察其从左至右平移过程中与圆O1、圆O2的位置关系,结合三个圆的半径大小即可得到本题所求答案.2、B【解析】由已知条件可得,可得出,可求出AC的长【详解】解:由题意得:B=DAC,ACB=ACD,所以,根据“相似三角形对应边成比例”,得,又AD 是中线,BC=8,得DC=4,代入可得AC=,故选B.【点睛】本题主要考查相似三角形的判定与性质灵活运用相似的性质可得出解答3、D【解析】当k1,k2同号时,正比例函数yk1x与反比例函
10、数y的图象有交点;当k1,k2异号时,正比例函数yk1x与反比例函数y的图象无交点,即可得当k1k20时,正比例函数yk1x与反比例函数y的图象无交点,故选D.4、C【解析】先根据三视图得到圆锥的底面圆的直径为12cm,高为8cm,再计算母线长为10,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形半径等于圆锥的母线长计算圆锥的侧面积和底面积的和即可.【详解】圆锥的底面圆的直径为12cm,高为8cm,所以圆锥的母线长=10,所以此工件的全面积=62+2610=96(cm2).故答案选C.【点睛】本题考查的知识点是圆锥的面积及由三视图判断几何体,解题的关键是熟练的掌握圆锥的面
11、积及由三视图判断几何体.5、C【解析】由ABC与DEF相似,相似比为2:3,根据相似三角形的性质,即可求得答案【详解】ABC与DEF相似,相似比为2:3,这两个三角形的面积比为4:1故选C【点睛】此题考查了相似三角形的性质注意相似三角形的面积比等于相似比的平方6、B【解析】根据加权平均数、众数、中位数的计算方法求解即可.【详解】,15出现了8次,出现的次数最多,故众数是15,从小到大排列后,排在10、11两个位置的数是14,14,故中位数是14.故选B.【点睛】本题考查了平均数、众数与中位数的意义数据x1、x2、xn的加权平均数:(其中w1、w2、wn分别为x1、x2、xn的权数).一组数据中
12、出现次数最多的数据叫做众数中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数7、A【解析】用-1加上1,求出比-1大1的是多少即可【详解】-1+1=1,比-1大1的是1故选:A【点睛】本题考查了有理数加法的运算,解题的关键是要熟练掌握: “先符号,后绝对值”8、B【解析】根据图示知,反比例函数的图象位于第一、三象限,k0,一次函数y=kxk的图象与y轴的交点在y轴的负半轴,且该一次函数在定义域内是增函数,一次函数y=kxk的图象经过第一、三、四象限;故选:B.9、B【解析】由三角形中位线定理和直角三角形斜边上的中线等于斜边的一半解
13、答【详解】在ABC中,CDAB于点D,E,F分别为AC,BC的中点,DE=AC=4.1,DF=BC=4,EF=AB=1,DEF的周长=(AB+BC+AC)=(10+8+9)=13.1故选B【点睛】考查了三角形中位线定理和直角三角形斜边上的中线,三角形的中位线平行于第三边,且等于第三边的一半10、C【解析】设的两根为x1,x2,由二次函数的图象可知,;设方程的两根为m,n,再根据根与系数的关系即可得出结论【详解】解:设的两根为x1,x2,由二次函数的图象可知, 设方程的两根为m,n,则 .故选C【点睛】本题考查的是抛物线与x轴的交点,熟知抛物线与x轴的交点与一元二次方程根的关系是解答此题的关键二
14、、填空题(本大题共6个小题,每小题3分,共18分)11、1或-1【解析】根据ab=(a+b)b,列出关于x的方程(2+x)x=1,解方程即可【详解】依题意得:(2+x)x=1,整理,得 x2+2x=1,所以 (x+1)2=4,所以x+1=2,所以x=1或x=-1故答案是:1或-1【点睛】用配方法解一元二次方程的步骤:把原方程化为ax2+bx+c=0(a0)的形式;方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;方程两边同时加上一次项系数一半的平方;把左边配成一个完全平方式,右边化为一个常数;如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判
15、定此方程无实数解12、1【解析】试题分析:直接把x=1代入已知方程就得到关于m的方程,再解此方程即可试题解析:x=1是一元二次方程x1-1mx+4=0的一个解,4-4m+4=0,m=1考点:一元二次方程的解13、【解析】试题分析:两个相似三角形的面积比为1:4,这两个相似三角形的相似比为1:1,这两个相似三角形的周长比是1:1,故答案为1:1考点:相似三角形的性质14、2.1【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a11-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的1的个数所决定【详解】解:1.111121=2.111-2
16、故答案为:2.111-2【点睛】本题考查用科学记数法表示较小的数,一般形式为a11-n,其中1|a|11,n由原数左边起第一个不为零的数字前面的1的个数所决定15、4cm【解析】求出扇形的弧长,除以2即为圆锥的底面半径,然后利用勾股定理求得圆锥的高即可【详解】扇形的弧长=4,圆锥的底面半径为42=2,故圆锥的高为:=4,故答案为4cm【点睛】本题考查了圆锥的计算,重点考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长16、3【解析】试题分析:数据3,x,3,3,3,6的中位数为3,解得x=3,数据的平均数=(33+3+3+3+6)=3,方差=(33)3+(33)3+(3
17、3)3+(33)3+(33)3+(63)3=3故答案为3考点:3方差;3中位数三、解答题(共8题,共72分)17、38+12 【解析】根据ABC=90,AE=CE,EB=12,求出AC,根据RtABC中,CAB=30,BC=12,求出根据DEAC,AE=CE,得AD=DC,在RtADE中,由勾股定理求出 AD,从而得出DC的长,最后根据四边形ABCD的周长=AB+BC+CD+DA即可得出答案【详解】ABC=90,AE=CE,EB=12,EB=AE=CE=12,AC=AE+CE=24,在RtABC中,CAB=30,BC=12, DEAC,AE=CE,AD=DC,在RtADE中,由勾股定理得 DC
18、=13,四边形ABCD的周长=AB+BC+CD+DA=【点睛】此题考查了解直角三角形,用到的知识点是解直角三角形、直角三角形斜边上的中线、勾股定理等,关键是根据有关定理和解直角三角形求出四边形每条边的长18、(1)详见解析;(1).【解析】(1)以点M为顶点,作AMN=O即可; (1)由AOB=45,ABOB,可知AOB为等腰为等腰直角三角形,根据勾股定理求出OA的长,即可求出AM的值.【详解】(1)作图如图所示;(1)由题知AOB为等腰RtAOB,且OB=1,所以,AO=OB=1又M为OA的中点,所以,AM=1=【点睛】本题考查了尺规作图,等腰直角三角形的判定,勾股定理等知识,熟练掌握作一个
19、角等于已知角是解(1)的关键,证明AOB为等腰为等腰直角三角形是解(1)的关键.19、见解析.【解析】(1)画出O的两条直径,交点即为圆心O(2)作直线AO交O于F,直线BF即为所求【详解】解:作图如下:(1);(2).【点睛】本题考查作图复杂作图,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型20、(1)72;(2)700;(3)【解析】试题分析:(1)根据动画类人数及其百分比求得总人数,总人数减去其他类型人数可得体育类人数,用360度乘以体育类人数所占比例即可得;(2)用样本估计总体的思想解决问题;(3)根据题意先画出树状图,得出所有情况数,再根据概率公式即可得出答案试题
20、解析:(1)调查的学生总数为6030%=200(人),则体育类人数为200(30+60+70)=40,补全条形图如下:“体育”对应扇形的圆心角是360=72;(2)估计该校2000名学生中喜爱“娱乐”的有:2000=700(人),(3)将两班报名的学生分别记为甲1、甲2、乙1、乙2,树状图如图所示:所以P(2名学生来自不同班)=考点:扇形统计图;条形统计图;列表法与树状图法;用样本估计总体21、(1);(2)m3;(3)【解析】(1)本题需先根据图象过A点,代入即可求出解析式;(2)由OABPAN可用m表示出PN,且可表示出PM,由条件可得到关于m的方程,则可求得m的值;(3)在y轴上取一点Q
21、,使,可证的P2OBQOP2,则可求得Q点坐标,则可把AP2+BP2转换为AP2+QP2,利用三角形三边关系可知当A、P2、Q三点在一条线上时,有最小值,则可求出答案.【详解】解:(1)A(4,0)在抛物线上,016a+4(a+2)+2,解得a,抛物线的解析式为y;(2)令x0可得y2,OB2,OPm,AP4m,PMx轴,OABPAN,M在抛物线上,PM+2,PN:MN1:3,PN:PM1:4,解得m3或m4(舍去);(3)在y轴上取一点Q,使,如图,由(2)可知P1(3,0),且OB2,且P2OBQOP2,P2OBQOP2,当Q(0,)时,QP2,AP2+BP2AP2+QP2AQ,当A、P2、Q三点在一条线上时,AP2+QP2有最小值,A(4,0),Q(0,),AQ,即AP2+BP2的最小值为【点睛】本题考查了抛物线解析式的求法,抛物线与相似三角形的问题,坐标系里表示三角形的面积及线段和最小值问题,要求会用字母代替长度,坐标,会对代数式进行合理变形,难度相对较大.22、 (1)0;(1)a+2a+1 ,3【解析】(1)根据a+e=0,可知a与e互为相反数,则c=0,可得b=-1,d=1,代入可得代数式b+c+d的值;(1)根据题意可得:a=1,将分式计算并代入可得结论即可;(3)先根据A、B、C、D、E为连续整数,即可求出a的值,再根据M
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 员工转正申请书2014
- 幼儿园星级申请书
- 2025年度医疗设备采购委托担保合同范本
- 外出学习申请书
- 退款申请书模板
- 二零二五年度美食城档口租赁与特色美食研发合同
- 现代职场中的跨部门沟通礼仪
- 直播电商的崛起带货模式在商业领域的应用
- 商业活动场地申请书
- 宏观经济学知到智慧树章节测试课后答案2024年秋安徽财经大学
- 胸腔镜肺癌根治术手术配合
- 初二地理会考复习教案
- 外研版七年级上册英语课文翻译
- 银行营销术语演练
- 医院培训课件:《成人住院患者静脉血栓栓塞症的预防护理》
- 学校食品安全教育学习活动食品安全讲座课件
- 2024年河北省公务员考试《行测》真题及答案解析
- 绿色建筑项目造价咨询服务方案
- 2024-2030年中国高油酸花生油市场供需趋势与营销推广渠道分析研究报告
- GB/T 44717-2024民用无人机可靠性飞行试验要求与方法
- 五年级上册数学小数四则混合运算练习100道及答案
评论
0/150
提交评论