版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、直角三角形存在性问题方法提炼:找点已知“两个定点,求作直角三角形”,可借用“两线一圆法”找到第三个极点的地址;直角三角形存在性问题商议先假设结论成立,依照直角极点的不确定性,分情况谈论方法一:画出详尽图形,依赖直角,作“横平竖直”辅助线,造“一线三直角”,利用相似列方程解方法二:引入一个字母,用它表示出三角形的三边,再分类谈论,利用勾股定理列方程求解;例1:如图在菱形ABCD中,ABC=60,AB=2,点P是菱形外面的一点,若以点P、A、C为极点的三角形是直角三角形,则P、D两点间的最短距离为.例2.如图,抛物线?y323x3与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C8x41)求
2、点A、B的坐标;2)若直线l过点E(4,0),M为直线l上的动点,当以A、B、M为极点所作的直角三角形有且只有三个时,求直线l的剖析式例3.如图,二次函数?yx2bxc图像经过原点和点A(2,0),直线?AB与抛物线交于点B,且BAO45(1)求二次函数剖析式及其极点(2)在直线?AB上可否存在点C的坐标;D,使得BCD?为直角三角形若存在,求出点D的坐标,若不存在,说明原由例4.(2017年.娄底)如图,抛物线y=ax2+bx+c与x轴交于两点A(4,0)和B(1,0),与y轴交于点C(0,2),动点D沿ABC的边AB以每秒2个单位长度的速度由起点A向终点B运动,过点D作x轴的垂线,交ABC
3、的另一边于点E,将ADE沿DE折叠,使点A落在点F处,设点D的运动时间为t秒(1)求抛物线的剖析式和对称轴;(2)可否存在某一时刻t,使得EFC为直角三角形?若存在,求出t的值;若不存在,请说明原由;针对性演练:1、如图,已知二次函数y=x2+bx+c的图象与x轴交于A,B两点,与y轴交于点P,极点为C(1,-2)(1)求此函数的关系式;(2)作点C关于x轴的对称点D,按次连接A,C,B,D若在抛物线上存在点E,使直线PE将四边形ABCD分成面积相等的两个四边形,求点E的坐标;3)在(2)的条件下,抛物线上可否存在一点F,使得PEF是以P为直角极点的直角三角形?若存在,求出点F的坐标及PEF的
4、面积;若不存在,请说明原由2、如图,直线y=-x+3与x轴,y轴分别订交于点B,点C,经过B,C两点的抛物线y=ax2+bx+c与x轴的另一交点为A,极点为P,且对称轴是直线x=2。1)求点A的坐标;2)求该抛物线的函数表达式;3)请问在抛物线上可否存在点Q,使得以点B、C、Q为极点的三角形为直角三角形?若存在,央求出点Q的坐标;若不存在,请说明原由.3、如图,在ABC中,AB=AC,ADBC于点D,BC=10cm,AD=8cm点P从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于
5、E、F、H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t0)(1)当t=2时,连接DE、DF,求证:四边形AEDF为菱形;(2)在整个运动过程中,所形成的PEF的面存储在最大值,当PEF的面积最大时,求线段BP的长;(3)可否存在某一时刻t,使PEF为直角三角形?若存在,央求出此时刻t的值;若不存在,请说明理答案:例1,PC的最小值为1例2,(1)A(-4,0)、B(2,0)189,AC:y3x3,平移AC可得L1L2,再依照D的横坐标为x=-1,(2)方法一、作CFL1,CF=5,CE=24可求D点坐标。方法二:设AC与对称轴交于点G,G(1,99y,DG=y94),设D
6、的坐标可设为(-1,y),则D1G=44由SACD=SABC,可求出y的值,既而求出D点坐标。D的坐标为1,9、1,2744(3)如答图2,以AB为直径作F,圆心为F要想以A、B、M为极点所作的三角形有且只有3个时,过点E的直线与F相切。过E点作F的切线,这样的切线有2条4123x3;连接FM,过M作MNx轴于点NM在第一象限,M(5,5),y44123M在第三象限,M(5,5),y4x3例3。(1)yx22x,C(1,-1)(2)方法一;AB:yx2,设D(x,-x+2),B(-1,3),C(1,-1),可求出BCD三边长,分两类通过勾股定理计算可求出D点坐标;BCD=90时,D7,1,BD
7、C=90时,x=2,x=-1(舍去),D(2,0)33方法二:直线AB:yx2,直线BC:y2x1若BCD=90时,CD:y132x2,将CD与AB关系式联立,可求出点D的坐标BDC=90时,CD:yx2,将CD与AB关系式联立,可求出点D的坐标例4答案:(1)y13x2,对称轴x32x222(2)AD=DF=2t,OF=4-4t,D(2t-4,0),AC:y21x2,E(2t-4,t)EFC=90,DEFOFC,列比率式,可求出t=3;FEC=90,AEF为等腰直角三角形,DE=1AF,t=2t,t=0(舍去)42ACF=90,针对性演练答案:1、(1)将极点(1,2)代入yx2bxc得y222x1x12,得yx(2)可证四边形ACBD为菱形,所以PE必过对称中心M,P(0,-1),M(1,0),可求PE:yx1,与yx22x1联立可求E点坐标(3,2)3)方法一:作FGy轴于G,证FGPPOM,OM=OP,可得PG=GF,即X=0(舍去),x=1,F(1,-2)方法二:P(0,-1),E(3,2),F三点坐标,可表示出PE、PF、EF长,利用勾股定理可求2、(1)yx24x3(3)BC:yx3,过B与BC垂直的直线表达式为yX=5,y=8,Q(5,8)若以BC为斜边,设Q(m,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度教育机构抵押担保贷款合同3篇
- 2024年量子计算技术研发合同
- 2024年股权收购及转让协议
- 2024年鱼塘租赁与渔业生物饲料供应合同3篇
- 2024年源地信用学贷受理助你轻松上大学3篇
- 2024年铝合金门窗工程范本合同
- 2024年音乐喷泉机电安装工程分包合作协议3篇
- 2024年物业服务管理合同完整性保障协议
- 2024年项目奖金分配合同
- 2024年雇佣关系约定书:共创共赢新篇章
- 2025河南荥阳市招聘第二批政务辅助人员211人高频重点提升(共500题)附带答案详解
- JJF 2180-2024婴儿辐射保暖台校准规范
- 2024年财政部会计法律法规答题活动题目及答案一
- 中建X局设计参数指标库
- 2025年八省联考新高考语文试题解读及备考启示
- 2025年江西江铜集团招聘笔试参考题库含答案解析
- 教育技术研究员合同模板
- 【MOOC期末】《电子技术实习SPOC》(北京科技大学)期末慕课答案
- 和达投资集团(杭州)有限公司招聘笔试冲刺题2025
- 联席会议制度及职责(3篇)
- 新媒体技术基础知识单选题100道及答案解析
评论
0/150
提交评论