医学统计学课件-生存分析第十七章_第1页
医学统计学课件-生存分析第十七章_第2页
医学统计学课件-生存分析第十七章_第3页
医学统计学课件-生存分析第十七章_第4页
医学统计学课件-生存分析第十七章_第5页
已阅读5页,还剩60页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第十七章 生存分析(Survival Analysis) 随访研究及统计分析第二军医大学卫生统计学教研室 孟 虹10/11/20221医学统计学第十七章 生存分析(Survival Analysi本章内容第一节 生存分析的基本概念第二节 生存率的估计与生存曲线*第三节 生存曲线的Log-rank检验第四节 COX比例风险回归模型*第五节 寿命表(不讲)*要求掌握概念、方法、用途。10/11/20222医学统计学本章内容第一节 生存分析的基本概念10/10/202概 述临床上疗效、预后的评价常用疾病的结局指标:如有效率、治愈率、死亡率比较。对于短期内能明确治疗效果的疾病是适用的。但对于远期疗效,

2、上述指标的评价不全面。10/11/20223医学统计学概 述10/10/20223医学统计学例 某病的疗效比较 治愈率(%) 平均治愈时间(月) 甲药 80 20 乙药 81 12 疗效除了应评价“结局”的好坏,结局所经历时间长短也是评价疗效重要的指标。10/11/20224医学统计学例10/10/20224医学统计学例2: 两种方法对疾病的疗效方法 治疗人数 生存人数 生存率% 甲方法 100 20 20乙方法 100 50 50经2检验 p0.05,乙法预后优于甲法。假定:1.观察期间疾病的死亡率不随时间变化。2.研究对象观察时间长度相等。10/11/20225医学统计学例2:10/10/

3、20225医学统计学随访研究随访研究(follow-up study)是医学中常用前瞻性研究.例:两种方法肾移植病人术后肾的生存时间和结局(生存率)比较.例:不同方法对某病人(癌症、反复发作疾病)生存时间(缓解时间)与结局(生存率)比较.该类数据通过随访得到,称为随访资料。10/11/20226医学统计学随访研究随访研究(follow-up study)是医学中常随访研究资料 当研究事件(y)的结局是两分类数据(发生,不发生),并且结局与时间(t)有关,如同时收集事件发生的时间(t),该类数据称为随访资料,分析该数据的统计方法用生存分析。生存分析是将“结局”与“时间”两个因素结合一起研究的统计

4、分析方法。10/11/20227医学统计学随访研究资料 当研究事件(y)的结局是两分类数据(发生一、随访数据概念 1.分析的变量(y) 1) 结局事件:指结局出现的特征,如疾病的死亡、复发、发生( y=1或0) 。 2)时间间隔变量 记为(t) t=结局事件出现日期 事件的起始日期 (起始日期可规定:如诊断、用药、手术日期等), t的单位:可用年、月、周表示 第一节 生存分析的基本概念10/11/20228医学统计学一、随访数据概念 1.分析的变量(y) 第2.截尾数据 观察过程中个体因其他原因未观察到明确的结局, 称为截尾或删失数据( censored data)。截尾原因有:失访,退出研究

5、,如其他原因死亡。研究时间结束,未出现结局事件。截尾值(censored value):时间(t)=截尾事件日期 起始事件日期记为t+。(例:10+月)10/11/20229医学统计学2.截尾数据 观察过程中个体因其他原因未观察到3.生存数据的特点1)完全数据:研究对象在规定研究期间提供确切的“时间和结局”。2)截尾数据(t+) :截尾数据虽然提供的信息不完全,但提供了部分信息,如 t=10+年9年。3)生存数据的结果变量(Y )有两个: 时间(t)值 ,t0 结局状态(y )=“ 如死亡或截尾值”10/11/202210医学统计学3.生存数据的特点1)完全数据:研究对象在规定研究期间提供确二

6、 资料的收集(一)随访研究设计1.明确研究对象的起始事件时间,如手术日期等。2.明确结局事件:如死亡或复发。3.明确研究跨度时间:如2000年至2019年结束。4.记录个体影响结果(y)的其他自变量。10/11/202211医学统计学二 资料的收集(一)随访研究设计10/10/202211医例:收集生存数据和影响预后的因素 。 某病不同药后随访记录(天) 预后因素 随访记录病例 性别 处理 开始 终止 是否 生存 号 组 日期 日期 死亡 时间1 1 A药 98/07/12 98/11/29 1 1402 2 B药 98/07/01 98/12/29 1 1603 1 A药 98/08/22

7、98/11/29 0 994 2 B药 98/10/20 98/11/25 车祸死亡 36 010/11/202212医学统计学例:收集生存数据和影响预后的因素 。10/10/202212(二)随访的方式1.全部观察对象同时接受不同处理(起点相同) 随访方式:多见于动物实验(见图17-1,a)2.观察对象在不同时间接受处理因素(起点不同) 随访方式:临床试验研究(见图17-1,b)10/11/202213医学统计学(二)随访的方式1.全部观察对象同时接受不同处理(起点相同)起始事件时间如给药0研究结束时间tOO为死亡O 为截尾动物实验随访数据(图17-1,a)10/11/202214医学统计学

8、起始事件时间0研究结束时间tOO为死亡动物实验随访数90年91年92年93年(研究结束)死亡失访死亡一批病人不同时间进入研究的随访资料起点存活起点起点起点起点存活10/11/202215医学统计学90年91年92年93年(研究结束)死亡失访死亡一批病人不同资料整理和记录某人研究手术方法治疗23位肾上腺肿瘤病人的生存时间(月)如下: 1,3,5(3),6(3),7,8,10(2),14+,17,19+,20+,22+,26+,31+,34,34+,44,59注:( )括号内的数为相同时间点的人数数据另一种记录:对象编号 生存时间(t) 结局状态(0为截尾值) 1 1 1 2 14 010/11/

9、202216医学统计学资料整理和记录某人研究手术方法治疗23位肾上腺肿瘤病人的(三)生存分析主要研究的内容1.统计描述:计算不同时间点(t)的生存率,描述生存过程。2.统计推断:检验不同处理方式的生存过程有无统计差别.3.自变量(x)对生存时间(t)的关系:影响生存时间的危险因素分析.10/11/202217医学统计学(三)生存分析主要研究的内容1.统计描述:计算不同时间点(t第二节 生存率的估计与生存曲线(一)描述生存资料的几个指标1.不同时间点生存率 2.生存曲线3.中位生存时间10/11/202218医学统计学第二节 生存率的估计与生存曲线(一)描述生存资料的几个指几个率概念死亡率、死亡

10、概率、生存概率、生存率死亡率:表示在单位时间(年)内死亡发生的频率(年平均死亡水平)。10/11/202219医学统计学几个率概念死亡率、死亡概率、生存概率、生存率10/10/20 死亡概率(F):在某时间段(t)开始存活的个体,死于(t+t)该时段内的可能性。生存概率(pi=1-F): 指某时间段开始存活的个体到该时间段结束时仍存活的概率。 (17-1)死亡概率、生存概率10/11/202220医学统计学 死亡概率(F):在某时间段(t)开始存活的个体,死于(t生存率(survival rate) 称为生存函数 记为S(t) S(t) :指观察对象从起始事件(如手术时间为0点)开始,到t时刻

11、仍存活的概率。常用n年生存率表示。 时间ti ,i=1,2,3n假设数据是完全数据,计算见例10/11/202221医学统计学生存率(survival rate) 称为生存函数 例:某病病人术后生存率 生存 期初 死亡 生存 死亡 生存 生存率 人数 人数 人数 概率 概率 0,1 100 10 90 0.1 0.9 0.901,2 90 10 80 0.11 0.89 0.802,3 80 20 60 0.25 0.75 0.60 10/11/202222医学统计学例:某病病人术后生存率 生存 期初 死亡 生存时间数据分析时整理示意图 死亡 0 2 4 6 8 10 12 14 16 18

12、20 年“t”表示从研究起点到结局出现时间t失访失访死亡死亡死亡10/11/202223医学统计学生存时间数据分析时整理示意图 “t”表示从研究起点到结局出现生存率S(t)的概率乘法估计 S(t)也称累计生存概率,t 时刻存活是t 时刻之前一直生存的累积。概率乘法原理计算(359页) Pi 为某时间区间(ti)的生存概率。假定个体在各时段生存是独立。(公式17-2)10/11/202224医学统计学生存率S(t)的概率乘法估计 S(t)也2.生存曲线:(survival curve) 指各时点(t)为横轴,生存率S(t)为纵轴,连接一起的曲线图。描述生存率在各时点(t)的变化过程。3.半数生存

13、期(中位数生存时间) 即生存率为0.5时对应的时间(t),描述一组数据平均生存时间。注:生存时间(t)是正偏态分布。10/11/202225医学统计学2.生存曲线:(survival curve)10/10/2甲手术乙手术图17-2 两种手术治疗方式术后病人生存曲线的比较月10/11/202226医学统计学甲手术乙手术图17-2 两种手术治疗方式术后病人生存曲(二)生存率估计的统计方法(非参数方法)1.小样本数据生存率计算*。 用 kaplan-Meier的乘积极限法(product-limit method,PL法)方法:1)将生存时间t由小到大排列。截尾值排在完全数据后,例:20,20+2

14、)列出t时刻死亡数(d)3)生存率估计用概率乘法原理例:17-1和表17-110/11/202227医学统计学(二)生存率估计的统计方法(非参数方法)1.小样本数据生存例17-1:某手术方法(甲法)治疗23例肾上腺肿瘤病人后生存情况(讲义358页)生存时间(t,月),其中“+”者为截尾数据 1,3,5(3),6(3),7,8,10 (2),14+,17,19+,20+,22+,26+,31+,34,34+,44,59计算生存率s(t)和生存曲线10/11/202228医学统计学例17-1:某手术方法(甲法)治疗23例肾上腺肿瘤病人后生存表17-1 甲种手术后病人生存率的计算方法时间(月) 死亡

15、 期初 死亡 生存 生存率ti 人数 人数 概率 概率 1 1 23 0.043 0.957 0.9573 1 22 0.045 0.955 0.9145 3 21 0.143 0.857 0.7836 3 18 0.167 0.833 0.6527 1 15 0.067 0.933 0. 6098 1 14 0.071 0.929 0.56510 2 13 0.154 0.846 0.47814+ 0 11 0.000 1.000 0.47810/11/202229医学统计学表17-1 甲种手术后病人生存率的计算方法时间(月) 死表17-1资料甲手术描述指标(SPSS 软件) Surviva

16、l Standard 95% Confidence Time error IntervalMean: 24.23 4.99 ( 14.44, 34.01 )Median: 10.00 6.96 (.00, 23.63 ) 表17-2资料乙手术描述指标 Survival Standard 95% Confidence Time Err Interval Mean 7.80 1.18 (5.50, 10.10 )Median 6.00 2.98 (0.16, 11.84 )10/11/202230医学统计学表17-1资料甲手术描述指标(SPSS 软件) 2.大样本资料的生存分析方法寿命表法(Lif

17、e-table method)表17-3 2418例男性心绞痛病人生存率情况术后 死亡 截尾 期初 校正 生存 生存率年数 人数 人数 人数 人数 概率 (t+1)0- 456 0 2418 2418 0.8114 0.81141- 226 39 1962 1942.5 0.8837 0.7172- 152 22 1697 1686 0.9098 0.6524校正人数=1962-39/2=1942.5 例17-310/11/202231医学统计学2.大样本资料的生存分析方法寿命表法(Life-table寿命表法与PL的区别1.计算在 时间段的生存率。 如0-1年、1-2年,时间段组距相等。2.

18、寿命表方法计算死亡概率,用校正观察人数计算。假定有截尾事件的人在各时间组内平均生存为1/2时间。死亡概率=某时间组内死亡人数/校正观察人数(校正观察人数=期初观察人数截尾人数/2)10/11/202232医学统计学寿命表法与PL的区别1.计算在 第三节 生存曲线的统计检验 比较不同方法的生存率,常进行生存率曲线间的比较。方法:时序检验(Log-Rank test),可对两组或多组生存率曲线做比较.检验假设:H0:两总体的生存率曲线相同 H1:两总体的生存率曲线不同=0.05,如P,拒绝H010/11/202233医学统计学第三节 生存曲线的统计检验 比较不同方法的生存率,Log-rank检验检

19、验统计量:该2服从自由度=比较组数1Ai 为某组各时点实际死亡频数合计.Ti 为某组各时点期望死亡频数合计i 表示比较组,i=1,2,k组10/11/202234医学统计学Log-rank检验检验统计量:10/10/202234医学Log-rank检验的基本思想时间 甲法手术组 乙法手术组 合计 t T1i T2i 1 23 1 1.605 20 2 1.395 43 3 2 22 0 0.550 18 1 0.450 40 1 表17-4部分数据,365页按两组合计死亡率计算各组理论频数(T).10/11/202235医学统计学Log-rank检验的基本思想时间 甲法手术组 两组生存率曲线的

20、检验 H0:s(t1)= s(t2)=组数-1=2-1, p0.01结论:两生存率曲线有统计差别, 甲手术方法后生存率高于乙法.10/11/202236医学统计学两组生存率曲线的检验 H0:s(t1)= s(t2)10/甲手术乙手术图17-2 两种手术治疗方式术后病人生存曲线的比较月10/11/202237医学统计学甲手术乙手术图17-2 两种手术治疗方式术后病人生存曲第四节 COX比例风险回归模型 COX模型用于分析生存事件与多个危险因素(x)的回归关系,以确定X对预后的重要性。生存数据(y)的特殊性: 事件结局y=1或0,同时结局经历的时间(t)。 有截尾数据。 不能单用时间(t)做多元线

21、性回归或用结局做Logistic回归。10/11/202238医学统计学第四节 COX比例风险回归模型 COX模型用一、Cox模型的基本形式h(t,x):风险函数(hazard function) 表示具有某危险因素(x)的个体在t 时刻的死亡风险率。 公式17-15回归模型10/11/202239医学统计学一、Cox模型的基本形式h(t,x):风险函数(hazardCox模型及参数的意义 h(t,x)=h0(t)exp(x )方程由两部分组成:1. h0(t):危险因素X=0时,在ti 时刻的基础风险死亡率。 h0(t)是未知的。2. exp(x ):危险因子的系数假定Exp(X)与t 变化

22、无关的风险因子10/11/202240医学统计学Cox模型及参数的意义 h(t,x)=h0(t)h(t,x)01.00.20.40.60.81234时间t死亡风险率比例风险率函数示意图假定在任何时刻t,死亡风险的比值是不变的。10/11/202241医学统计学h(t,x)01.00.20.40.60.81234时间t死COX回归模型又称为比例风险率模型(proportion hazard model,PH)模型的另一表达方式或10/11/202242医学统计学COX回归模型又称为比例风险率模型(proportion COX回归系数的含义某风险函数表示有危险因素(x=1) 与无危险因素(x=0)

23、的个体相比,两组死亡率相对危险度的对数值。10/11/202243医学统计学COX回归系数的含义某风险函数表示有危险因素(x=1) 相对危险度(Relative risk ,RR)RR:指暴露于某种危险因素观察对象的发病(死亡)率(P1)与无暴露因素组观察对象发病(死亡)率(P0)的比值。RR1说明有暴露因素存在,发生疾病危险性相对于对照组的倍数,反映暴露因素与疾病的关联(因果)关系。 常用于前瞻性或队列研究。10/11/202244医学统计学相对危险度(Relative risk ,RR)RR:指暴露COX模型回归系数()在医学中的意义h(t,x)=h0(t)exp(x ) 反映某X与死亡风

24、险的关系=0,表示某因素(X) 与死亡风险无关。0,是死亡的危险因素。0, 是死亡保护因素。 如有某危险因素=1,无=010/11/202245医学统计学COX模型回归系数()在医学中的意义如有某危险因素=1,无 i 表示其他因素固定(不变)后,个体有某有协变量(Xi=1)与(X=0)相比,死亡风险率相对危险度的对数值,或Xi每增加一个单位,死亡风险增加i。 多因素Cox回归模型i的概念10/11/202246医学统计学 i 表示其他因素固定(不变)后,个体有例368页 探讨胃癌患者的预后因素:比较胃癌患者用不同方法后,对其生存时间的预后因素分析,其中 X1(手术=1,否=0)、 X2(放射治

25、疗=1,否=0 )。数据记录和整理:患者编号 X1 X2 生存时间t 截尾* 1 1 0 20 1 2 0 1 15 0* 死亡=1,截尾=010/11/202247医学统计学例368页 探讨胃癌患者的预后因素:比较胃癌患者用不同方得COX模型:10/11/202248医学统计学得COX模型:10/10/202248医学统计学 1的含义:做手术者的死亡风险是不做手术者的69.7%。1的含义:控制其他因素后(放射因素),做手术与不手术者相比,死亡风险的相对危险度。X1(手术=1,否=0)10/11/202249医学统计学1的含义:控制其他因素后(放射因素),做手术与不手术者相含义:两个方法都治疗

26、的病人的死亡风险是不治疗病人的50%。如 病人甲( X1=1,X2=1)与 病人乙 (X1=0,X2=0)相比。10/11/202250医学统计学含义:两个方法都治疗的病人的死亡风险是不治疗病人的50%。如二.COX模型的参数估计与假设检验(讲义368-371页)1.回归系数( i )的估计 i采用最大似然法估计似然函数得到。2.回归系数(i)的检验 似然比函数和wald检验。(不需要掌握)10/11/202251医学统计学二.COX模型的参数估计与假设检验(讲义368-371页)三 因素的筛选和最佳模型的建立(讲义371页) 采用逐步回归法筛选有统计意义的变量逐步回归检验水准: 进入方程的检

27、验水准为0.05或0.10 变量保留在方程的水准为0.1或0.15 以上计算在统计软件(SAS、SPSS等)均可完成。10/11/202252医学统计学三 因素的筛选和最佳模型的建立(讲义371页) 采用四、COX回归方程在生存分析中的主要应用1.筛选对死亡风险预后的危险因素 估计危险因素(x)的回归系数(),得到相对危险度(RR)和可信区间。2. 校正混杂因素,评价实验处理的效应 例讲义 探讨胃癌患者的预后因素3.计算预后指数(PI),对个体预后风险做评价。(17-28)10/11/202253医学统计学四、COX回归方程在生存分析中的主要应用1.筛选对死亡风险五 应用实例例17-5 探讨6

28、3例恶性肿瘤患者的预后变量名 变量 量化值 X1 年龄 岁X2 性别 男1,女2X3 组织学类型 高分化1,低分化2X4 治疗方式 传统 1,新方法2X5 淋巴节是否转移 是1 否 2X6 肿瘤浸润程度 突破浆膜1 无2Y 结局 死亡 0 截尾1t 生存时间 月10/11/202254医学统计学五 应用实例例17-5 探讨63例恶性肿瘤患者的预数据录入格式63例恶性肿瘤患者的生存时间(t,月)与预后因素患者序号X1X2X3X4X5X6 ty154000105212570110051135800111350443110101031Y为结局,死亡=0,截尾=1检验水准:进入水准为0.05,剔除方程

29、水准为0.0610/11/202255医学统计学数据录入格式63例恶性肿瘤患者的生存时间(t,月)与预后采用逐步回归计算表17-7 COX模型筛选危险因素变量 Sb p RR 95%可信区间X4 1.761 0.547 0.0013 5.822 1.98 17.03X5 0.931 0.444 0.0362 2.538 1.06 6.06X4:传统法=1, 新法=0, X5淋巴节转移=1, 未转移=0COX模型表达h(t,x)=h0(t)exp(1.761X4+0.931X5)结论:传统法和淋巴节转移是影响肿瘤生存的不利因素.10/11/202256医学统计学采用逐步回归计算表17-7 COX

30、模型筛选危险因素例: 探讨胃癌患者的预后因素得COX模型:x1=手术, x2=放疗结论:手术效果优于放疗.问:两种方法何者效果更好?10/11/202257医学统计学例: 探讨胃癌患者的预后因素得COX模型:x1=手术, 例:肺癌病人生存时间与有关因素的分析记录75例肺癌病人的生存时间(月)和18个可能与预后有关的因素年龄、性别、得分、类型、分化、分期、淋巴结侵犯、CEA、P53、P16、放疗、化疗、手术等分析目的:1.筛选出与预后有关的主要危险因子2.对个体预后危险性进行评价10/11/202258医学统计学例:肺癌病人生存时间与有关因素的分析记录75例肺癌病人的生存COX回归模型结果(逐步回归法) B SE Wald B Sig. Exp(B) 年龄 .064 .017 13.89 0.77 .000 1.066 性别 -.833 .425 3.839 -0.35 .040 .435 分期 .266 .141 3.585 0.51 .005 1.305 CEA .015 .00

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论