版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知数列满足,则( )ABCD2函数与的图象上存在关于直线对称的点,则的取值范围是( )ABCD3已知函数,若,则等于( )A-3B-1C3D04数列an,满足对任意的nN+,均有an+an+1+an+2为定值.若a7=2,a9=3,a98=
2、4,则数列an的前100项的和S100=( )A132B299C68D995各项都是正数的等比数列的公比,且成等差数列,则的值为()ABCD或6已知函数的图像向右平移个单位长度后,得到的图像关于轴对称,当取得最小值时,函数的解析式为( )ABCD7甲乙丙丁四人中,甲说:我年纪最大,乙说:我年纪最大,丙说:乙年纪最大,丁说:我不是年纪最大的,若这四人中只有一个人说的是真话,则年纪最大的是( )A甲B乙C丙D丁8中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,数学.某校国学社团开展“六艺
3、”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“乐”不排在第一节,“射”和“御”两门课程不相邻,则“六艺”课程讲座不同的排课顺序共有( )种.A408B120C156D2409复数的虚部为()A1B3C1D210正方体,是棱的中点,在任意两个中点的连线中,与平面平行的直线有几条( )A36B21C12D611若集合,则=( )ABCD12设函数,若函数有三个零点,则()A12B11C6D3二、填空题:本题共4小题,每小题5分,共20分。13已知,则_,_.14已知、为正实数,直线截圆所得的弦长为,则的最小值为_.15齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的
4、上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马.现从双方的马匹中随机选一匹进行一场比赛,则田忌的马获胜的概率为_16已知双曲线的左右焦点分别为,过的直线与双曲线左支交于两点,的内切圆的圆心的纵坐标为,则双曲线的离心率为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知,设函数,.(1)若,求不等式的解集;(2)若函数的最小值为1,证明:.18(12分)某精密仪器生产车间每天生产个零件,质检员小张每天都会随机地从中抽取50个零件进行检查是否合格,若较多零件不合格,则需对其余所有零件进行检查根据多年的生产数据和经验,这些零件的
5、长度服从正态分布(单位:微米),且相互独立若零件的长度满足,则认为该零件是合格的,否则该零件不合格(1)假设某一天小张抽查出不合格的零件数为,求及的数学期望;(2)小张某天恰好从50个零件中检查出2个不合格的零件,若以此频率作为当天生产零件的不合格率已知检查一个零件的成本为10元,而每个不合格零件流入市场带来的损失为260元假设充分大,为了使损失尽量小,小张是否需要检查其余所有零件,试说明理由附:若随机变量服从正态分布,则19(12分)某百货商店今年春节期间举行促销活动,规定消费达到一定标准的顾客可进行一次抽奖活动,随着抽奖活动的有效开展,参与抽奖活动的人数越来越多,该商店经理对春节前天参加抽
6、奖活动的人数进行统计,表示第天参加抽奖活动的人数,得到统计表格如下:123456758810141517(1)经过进一步统计分析,发现与具有线性相关关系请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(2)该商店规定:若抽中“一等奖”,可领取600元购物券;抽中“二等奖”可领取300元购物券;抽中“谢谢惠顾”,则没有购物券已知一次抽奖活动获得“一等奖”的概率为,获得“二等奖”的概率为现有张、王两位先生参与了本次活动,且他们是否中奖相互独立,求此二人所获购物券总金额的分布列及数学期望参考公式:,20(12分)已知函数的图象向左平移后与函数图象重合.(1)求和的值;(2)若函数,求的单调
7、递增区间及图象的对称轴方程.21(12分)在平面直角坐标系中,点,直线的参数方程为为参数),以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为(1)求曲线的直角坐标方程;(2)若直线与曲线相交于不同的两点是线段的中点,当时,求的值22(10分)某大型单位举行了一次全体员工都参加的考试,从中随机抽取了20人的分数.以下茎叶图记录了他们的考试分数(以十位数字为茎,个位数字为叶):若分数不低于95分,则称该员工的成绩为“优秀”.(1)从这20人中任取3人,求恰有1人成绩“优秀”的概率;(2)根据这20人的分数补全下方的频率分布表和频率分布直方图,并根据频率分布直方图解决下面的问题
8、.组别分组频数频率1234估计所有员工的平均分数(同一组中的数据用该组区间的中点值作代表);若从所有员工中任选3人,记表示抽到的员工成绩为“优秀”的人数,求的分布列和数学期望.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】利用的前项和求出数列的通项公式,可计算出,然后利用裂项法可求出的值.【详解】.当时,;当时,由,可得,两式相减,可得,故,因为也适合上式,所以.依题意,故.故选:C.【点睛】本题考查利用求,同时也考查了裂项求和法,考查计算能力,属于中等题.2C【解析】由题可知,曲线与有公共点,即方程有解,可得有解,令
9、,则,对分类讨论,得出时,取得极大值,也即为最大值,进而得出结论.【详解】解:由题可知,曲线与有公共点,即方程有解,即有解,令,则,则当时,;当时,故时,取得极大值,也即为最大值,当趋近于时,趋近于,所以满足条件故选:C.【点睛】本题主要考查利用导数研究函数性质的基本方法,考查化归与转化等数学思想,考查抽象概括、运算求解等数学能力,属于难题3D【解析】分析:因为题设中给出了的值,要求的值,故应考虑两者之间满足的关系.详解:由题设有,故有,所以,从而,故选D.点睛:本题考查函数的表示方法,解题时注意根据问题的条件和求解的结论之间的关系去寻找函数的解析式要满足的关系. 4B【解析】由为定值,可得,
10、则是以3为周期的数列,求出,即求.【详解】对任意的,均有为定值,故,是以3为周期的数列,故,.故选:.【点睛】本题考查周期数列求和,属于中档题.5C【解析】分析:解决该题的关键是求得等比数列的公比,利用题中所给的条件,建立项之间的关系,从而得到公比所满足的等量关系式,解方程即可得结果.详解:根据题意有,即,因为数列各项都是正数,所以,而,故选C.点睛:该题应用题的条件可以求得等比数列的公比,而待求量就是,代入即可得结果.6A【解析】先求出平移后的函数解析式,结合图像的对称性和得到A和.【详解】因为关于轴对称,所以,所以,的最小值是.,则,所以.【点睛】本题主要考查三角函数的图像变换及性质.平移
11、图像时需注意x的系数和平移量之间的关系.7C【解析】分别假设甲乙丙丁说的是真话,结合其他人的说法,看是否只有一个说的是真话,即可求得年纪最大者,即可求得答案.【详解】假设甲说的是真话,则年纪最大的是甲,那么乙说谎,丙也说谎,而丁说的是真话,而已知只有一个人说的是真话,故甲说的不是真话,年纪最大的不是甲;假设乙说的是真话,则年纪最大的是乙,那么甲说谎,丙说真话,丁也说真话,而已知只有一个人说的是真话,故乙说谎,年纪最大的也不是乙;假设丙说的是真话,则年纪最大的是乙,所以乙说真话,甲说谎,丁说的是真话,而已知只有一个人说的是真话,故丙在说谎,年纪最大的也不是乙;假设丁说的是真话,则年纪最大的不是丁
12、,而已知只有一个人说的是真话,那么甲也说谎,说明甲也不是年纪最大的,同时乙也说谎,说明乙也不是年纪最大的,年纪最大的只有一人,所以只有丙才是年纪最大的,故假设成立,年纪最大的是丙.综上所述,年纪最大的是丙故选:C.【点睛】本题考查合情推理,解题时可从一种情形出发,推理出矛盾的结论,说明这种情形不会发生,考查了分析能力和推理能力,属于中档题.8A【解析】利用间接法求解,首先对6门课程全排列,减去“乐”排在第一节的情况,再减去“射”和“御”两门课程相邻的情况,最后还需加上“乐”排在第一节,且“射”和“御”两门课程相邻的情况;【详解】解:根据题意,首先不做任何考虑直接全排列则有(种),当“乐”排在第
13、一节有(种),当“射”和“御”两门课程相邻时有(种),当“乐”排在第一节,且“射”和“御”两门课程相邻时有(种),则满足“乐”不排在第一节,“射”和“御”两门课程不相邻的排法有(种),故选:【点睛】本题考查排列、组合的应用,注意“乐”的排列对“射”和“御”两门课程相邻的影响,属于中档题9B【解析】对复数进行化简计算,得到答案.【详解】所以的虚部为故选B项.【点睛】本题考查复数的计算,虚部的概念,属于简单题.10B【解析】先找到与平面平行的平面,利用面面平行的定义即可得到.【详解】考虑与平面平行的平面,平面,平面,共有,故选:B.【点睛】本题考查线面平行的判定定理以及面面平行的定义,涉及到了简单
14、的组合问题,是一中档题.11C【解析】试题分析:化简集合故选C考点:集合的运算12B【解析】画出函数的图象,利用函数的图象判断函数的零点个数,然后转化求解,即可得出结果【详解】作出函数的图象如图所示,令,由图可得关于的方程的解有两个或三个(时有三个,时有两个),所以关于的方程只能有一个根(若有两个根,则关于的方程有四个或五个根),由,可得的值分别为,则故选B【点睛】本题考查数形结合以及函数与方程的应用,考查转化思想以及计算能力,属于常考题型.二、填空题:本题共4小题,每小题5分,共20分。13 【解析】利用两角和的正切公式结合可得出的方程,即可求出的值,然后利用二倍角的正、余弦公式结合弦化切思
15、想求出和的值,进而利用两角差的余弦公式求出的值.【详解】,.故答案为:;.【点睛】本题主要考查三角函数值的计算,考查两角和的正切公式、两角差的余弦公式、二倍角的正弦公式、余弦公式以及弦化切思想的应用,难度不大14【解析】先根据弦长,半径,弦心距之间的关系列式求得,代入整理得,利用基本不等式求得最值.【详解】解:圆的圆心为,则到直线的距离为,由直线截圆所得的弦长为可得,整理得,解得或(舍去),令,又,当且仅当时,等号成立,则.故答案为:.【点睛】本题考查直线和圆的位置关系,考核基本不等式求最值,关键是对目标式进行变形,变成能用基本不等式求最值的形式,也可用换元法进行变形,是中档题.15.【解析】
16、分析:由题意结合古典概型计算公式即可求得题中的概率值.详解:由题意可知了,比赛可能的方法有种,其中田忌可获胜的比赛方法有三种:田忌的中等马对齐王的下等马,田忌的上等马对齐王的下等马,田忌的上等马对齐王的中等马,结合古典概型公式可得,田忌的马获胜的概率为.点睛:有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举(2)注意区分排列与组合,以及计数原理的正确使用.162【解析】由题意画出图形,设内切圆的圆心为,圆分别切于,可得四边形为正方形,再由圆的切线的性质结台双曲线的定
17、义,求得的内切圆的圆心的纵坐标,结合已知列式,即可求得双曲线的离心率.【详解】设内切圆的圆心为,圆分别切于,连接,则,故四边形为正方形,边长为圆的半径,由,得,与重合,即,联立解得:,又因圆心的纵坐标为,.故答案为:【点睛】本题考查双曲线的几何性质,考查数形结合思想与运算求解能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1);(2)证明见解析【解析】(1)利用零点分段法,求出各段的取值范围然后取并集可得结果.(2)利用绝对值三角不等式可得,然后使用柯西不等式可得结果.【详解】(1)由,所以由当时,则所以当时,则当时,则综上所述:(2)由当且仅当时取等号所
18、以由,所以所以令根据柯西不等式,则当且仅当,即取等号由故,又则【点睛】本题考查使用零点分段法求解绝对值不等式以及柯西不等式的应用,属基础题.18(1)见解析(2)需要,见解析【解析】(1)由零件的长度服从正态分布且相互独立,零件的长度满足即为合格,则每一个零件的长度合格的概率为,满足二项分布,利用补集的思想求得,再根据公式求得;(2)由题可得不合格率为,检查的成本为,求出不检查时损失的期望,与成本作差,再与0比较大小即可判断.【详解】(1),由于满足二项分布,故.(2)由题意可知不合格率为,若不检查,损失的期望为;若检查,成本为,由于,当充分大时,所以为了使损失尽量小,小张需要检查其余所有零件
19、.【点睛】本题考查正态分布的应用,考查二项分布的期望,考查补集思想的应用,考查分析能力与数据处理能力.19(1);(2)见解析【解析】试题分析:(I)由题意可得,则,关于的线性回归方程为(II)由题意可知二人所获购物券总金额的可能取值有、元,它们所对应的概率分别为:,据此可得分布列,计算相应的数学期望为元试题解析:(I)依题意:,则关于的线性回归方程为(II)二人所获购物券总金额的可能取值有、元,它们所对应的概率分别为:,所以,总金额的分布列如下表:03006009001200总金额的数学期望为元20(1),;(2),.【解析】(1)直接利用同角三角函数关系式的变换的应用求出结果(2)首先把函数的关系式变形成正弦型函数,进一步利用正弦型函数的性质的应用求出结果【详解】(1)由题意得,(2)由,解得,所以对称轴为,.由,解得,所以单调递增区间为.,【点睛】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力,属于基础题型21(1);(2).【解析】(1)在已知极坐标方程两边同时乘以后,利用cosx,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 赣东学院《中外舞蹈史(一)》2023-2024学年第一学期期末试卷
- 甘肃中医药大学《马属动物遗传学》2023-2024学年第一学期期末试卷
- 七年级英语上册Module8ChoosingpresentsUnit2Sheoftengoestoconcerts教案含反思新版外研版
- 三年级数学下册六认识分数第5课时练习五教案北师大版
- 三年级科学上册第四单元人与水8水教案首师大版1
- 九年级化学上册第四章生命之源-水4.3质量守恒定律同步练习新版粤教版
- 小学生场景描写课件
- 高二物理期末模拟卷(考试版A3)【测试范围:人教版选必一选必二第一、二章】(新八省通-用)
- 2025年6月日历表(含农历-周数-方便记事备忘)
- 传染病防治的法律法规-课件
- 北京市朝阳区2024-2025学年高二上学期期末考试生物试卷(含答案)
- 湖南2025年湖南电气职业技术学院招聘14人历年参考题库(频考版)含答案解析
- 生物除臭系统施工方案
- DB51T 1069-2010 四川泡菜生产规范
- 2024云南保山电力股份限公司招聘(100人)高频难、易错点500题模拟试题附带答案详解
- 2024年江苏省高中学业水平合格性考试数学试卷试题(答案详解1)
- 学前儿童数学教育智慧树知到期末考试答案章节答案2024年湖州师范学院
- 2024年中南出版传媒集团股份有限公司招聘笔试参考题库含答案解析
- 超星尔雅学习通《生命安全与救援》章节测试含答案
- 三级公共营养师实践技能知识点.(良心出品必属精品)
- 语文九年级寒假作业任务表
评论
0/150
提交评论