版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Field and Wave Electromagnetic电磁场与电磁波2014. 31作业情况1班:人合计:人情况:2P.2-153Review1. Gradient of a Scalar Field 标量场的梯度2. Divergence of a Vector Field 矢量场的散度3. Divergence Theorem 散度定理456电子科技大学2014考研复试分数线已公布 7重庆大学2014考研复试分数线公布 8东南大学2014考研复试分数线公布 910Main topic1. Curl of a Vector Field 矢量场的旋度2. Stokess Theorem
2、斯托克斯定理3. Two Null Identities 两零恒等式4. Helmholtzs Theorem 亥姆霍兹定理11121).矢量场的环量矢量场A沿有向闭合曲线 l 的线积分称为矢量场A沿该曲线的环量,以表示为0, 0,=0如如何显示源的分布特性?矢量场的旋度13SMlen称为矢量A对于方向en的环量强度正最大次之零负最大零注意:在每一点P处都有无穷多的方向环量,且大小可能不等。en1en2141. Curl of a Vector FieldFlow流量 source; vortex漩涡 source; vortex sinkthe (net ) circulation 净环量S
3、ince circulation as defined in Eq. is a line integral of a dot product, its value obviously depends on the orientation(方向) of the contour C relative to the vector A. In order to define a point function, which is a measure of the strength of a vortex source漩涡源, we must make C very small and orient it
4、 in such a way that the circulation is maximum最大.15In words, Eq. states that the curl of a vector field A, denoted by curl A or A, is a vector whose magnitude is the maximum net circulation最大净环量 of A per unit area as the area tends to zero零 and whose direction is the normal direction of the area whe
5、n the area is oriented to make the net circulation maximum. 矢量场A的旋度是一个矢量,其大小为当面积趋于零时单位面积上A的最大净环量,其方向为当面积的取向使得净环量呈最大时,该面积的法线方向。The component of A in any other direction au is au (A), which can be determined from the circulation per unit area normal to au as the area approaches zero.162).旋度概念在某点,旋度矢量的
6、方向是使矢量A具有最大环量强度(环路所围面积的方向)的方向,其大小等于对该矢量方向的最大环量强度,记为式中,en为旋度方向上的单位矢量。此式表明,矢量场的旋度大小可以认为是包围单位面积上的闭合曲线的最大环量,代表了(旋度)源的强度。绕任意方向的方向环量?旋度与该方向单位矢量的点积(投影)其方向为当面积的取向使得环量呈最大时,该面积的法线方向(右手定则)17直角坐标系球坐标系柱坐标系18旋度运算规则19Example 2-21(P57-58)20A curl-free vector field is called an irrotational无旋场 or a conservative fiel
7、d保守场. A divergenceless field is called a solenoidal field无散场.212. Stokess TheoremThe surface integral of the curl of a vector field over an open surface is equal to the closed line integral of the vector along the contour bounding the surface.一矢量场的旋度在一开放表面上的面积分,等于该矢量沿包围该表面的围线的封闭线积分。Stokess theorem c
8、onverts a surface integral of the curl of a vector to a line integral of the vector, and vice versa反之亦然. It always implies an open surface with a rim. We remind ourselves here that the directions of dl and ds(an) follow the right-hand rule.22Example 2-22(P60)23244. Divergence of a Vector Field5. Div
9、ergence Theorem6. Curl of a Vector Field7. Stokess Theorem总结253. Two Null Identities 两零恒等式 The curl of the gradient of any scalar field is identically zero. 梯度的旋度为零(the existence of V and its first derivatives everywhere is implied here.) 3.1 IDENTITY I A converse statement of Identity I can be made
10、 as follows: if a vector field is curl-free, then it can be expressed as the gradient of a scalar field.ifthen An irrotational 无旋(a conservative保守) vector field can always be expressed as the gradient of a scalar field.26 The divergence of the curl of any vector field is identically zero. 旋度的散度为零。 3
11、.2 IDENTITY II A converse statement of Identity II is as follows: if a vector field is divergenceless, then it can be expressed as the curl of another vector field. A divergenceless field is also called a solenoidal 无旋field. Solenoidal fields are not associated with flow sources of sinks. The net ou
12、rward flux of a solenoidal field through any closed surface is zero, and the flux lines close upon themselves.ifthen274. Helmholtzs Theorem 亥姆霍兹定理In previous sections we mentioned that a divergenceless field is solenoidal无散, and a curl-free field is irrotational. We may classify vector fields in acc
13、ordance with their being solenoidal and/or irrotational 1).solenoidal and irrotationalExample: A static electric field静电场 in a charge-free region3).solenoidal and rotationalExample: A steady magnetic field in a current-carrying conductor2). irrotational but not solenoidal Example: A static electric
14、field in a charge region4).Neither solenoidal nor irrotationalExample: An electric field in a charged medium with a time-varying magnetic field.28The most general vector field then has both a nonzero divergence and a nonzero curl, and can be considered as the sum of a solenoidal field and an irrotat
15、ional field. Helmholtzs Theorem: A vector field ( vector point function) is determined to within an additive constant if both its divergence and its curl are specified everywhere.In an unbounded region we assume that both the divergence and the curl of the vector field vanish at infinity. If the vec
16、tor field is confined within a region bounded by a surface, then it is determined if its divergence and curl throughout the region, as well as the normal component of the vector over the bounding surface, are given. Here we assume that the vector function is single-valued and that its derivatives ar
17、e finite and continuous. 29The divergence of a vector is a measure of the strength of the flow source 通量源and that the curl of a vector is a measure of the strength of the vortex source漩涡源. When the strengths of both the flow source and the vortex source are specified, we except that the vector field
18、 will be determined. Thus, we can decompose a general vector field F into an irrotational (conservative) part Fi and a solenoidal part Fs:Because of Two Null Identities:30 位于某一区域中的矢量场,当其散度、旋度以及边界上场量的切向分量或法向分量给定后,则该区域中的矢量场被惟一地确定。 已知散度和旋度代表产生矢量场的源,可见惟一性定理表明,矢量场被其源及边界条件共同决定的。VSF(r)矢量场的惟一性定理31 若矢量场 F(r)
19、 在无限区域中处处是单值的, 且其导数连续有界,源分布在有限区域V 中,则当矢量场的散度及旋度给定后,该矢量场 F(r) 可以表示为 式中V zxyr Or r r F(r)亥姆霍兹定理32Example 2-23 (p65) Given a vector function : F=ax(3y-c1z)+ay(c2x-2z)-az(c3y+z) (a)Determine the constant c1,c2and c3 if F is irrotational; (b)Determine the scalar potential function V whose negative gradient equals to F33341. Products of Vectors2. Orthogonal Coordinate SystemsCartesian CoordinatesPosition vector:Arbitrary Vector A:summ
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度年福建省高校教师资格证之高等教育法规提升训练试卷B卷附答案
- 2023年重铬酸钠资金筹措计划书
- 中级经济师(运输经济)《专业知识与实务》考前冲刺必会试题及答案
- 三年级数学(上)计算题专项练习附答案集锦
- 办公用品质量保证书
- 2024年公司迁移服务协议模板
- 村会议决议模板5篇
- 2024详细土建工程承揽协议模板
- 2024年事业单位正式协议样式
- 岗位聘任职责与权益详解协议样本
- 电动葫芦出厂检验报告
- 找次品-华应龙老师课件
- 风电工程项目质量控制管理
- 中小学德育工作评价细则
- 下穿式隧道建设工程监理实施细则
- DB1506T 13-2020 热力站建设技术标准
- 10、20以内加减法口诀表(打印)
- 中药材种植计划书
- 《现代商务礼仪》课程标准(中职)
- ZX7系列手工焊机说明书
- 解放战争-第二次国共内战
评论
0/150
提交评论