2022-2023学年湖北麻城思源学校九年级数学第一学期期末质量检测模拟试题含解析_第1页
2022-2023学年湖北麻城思源学校九年级数学第一学期期末质量检测模拟试题含解析_第2页
2022-2023学年湖北麻城思源学校九年级数学第一学期期末质量检测模拟试题含解析_第3页
2022-2023学年湖北麻城思源学校九年级数学第一学期期末质量检测模拟试题含解析_第4页
2022-2023学年湖北麻城思源学校九年级数学第一学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022-2023学年九上数学期末模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1如图,是的直径,四边形内接于,若,则的周长为( )ABCD2从这七个数中随机抽取一个数记为,则的值是不等式组的解,但不是方程的实数解的概率为( )ABCD3生产季节性产品的企业,当它的产品无利润时就会及时停产现有一生产季节性产品的企业,其一年中获

2、得的利润和月份之间的函数关系式为,则该企业一年中应停产的月份是( )A1月、2月、3月B2月、3月、4月C1月、2月、12月D1月、11月、12月4如下所示的4组图形中,左边图形与右边图形成中心对称的有( )A1组B2组C3组D4组5下列说法中正确的有( )位似图形都相似;两个等腰三角形一定相似;两个相似多边形的面积比是,则周长比为;若一个矩形的四边形分别比另一个矩形的四边形长2,那么这两个矩形一定相似A1个B2个C3个D4个6(2011?德州)一个平面封闭图形内(含边界)任意两点距离的最大值称为该图形的“直径”,封闭图形的周长与直径之比称为图形的“周率”,下面四个平面图形(依次为正三角形、正

3、方形、正六边形、圆)的周率从左到右依次记为a1,a2,a3,a4,则下列关系中正确的是( )Aa4a2a1Ba4a3a2Ca1a2a3Da2a3a47已知下列命题:对角线互相平分的四边形是平行四边形;内错角相等;对角线互相垂直的四边形是菱形;矩形的对角线相等,其中假命题有( )A个B个C个D个8是四边形的外接圆,平分,则正确结论是( )ABCD9如图,AB,BC是O的两条弦,AOBC,垂足为D,若O的直径为5,BC4,则AB的长为()A2B2C4D510为了美化校园环境,加大校园绿化投资某区前年用于绿化的投资为18万元,今年用于绿化的投资为33万元,设这两年用于绿化投资的年平均增长率为x,则(

4、)A18(1+2x)33B18(1+x2)33C18(1+x)233D18(1+x)+18(1+x)23311如图,抛物线yax2bxc(a0)的对称轴为直线x1,与x轴的一个交点坐标为(1,0),其部分图象如图所示,下列结论:4acb2;方程ax2bxc0的两个根是x11,x23;3ac0;当y0时,x的取值范围是1x3;当x0时,y随x增大而增大其中结论正确的个数是( )A4个B3个C2个D1个12如图,AB为O的弦,半径OC交AB于点D,ADDB,OC5,OD3,则AB的长为()A8B6C4D3二、填空题(每题4分,共24分)13已知ABC与DEF是两个位似图形,它们的位似比为,若,那么

5、_14如图,在等边ABC中,AB=8cm,D为BC中点将ABD绕点A逆时针旋转得到ACE,则ADE的周长为_cm15已知点是线段的一个黄金分割点,且,那么_16在某一时刻,测得一根高为的竹竿的影长为,同时同地测得一栋楼的影长为,则这栋楼的高度为_17如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数y(x0)的图象与AB相交于点D与BC相交于点E,且BD3,AD6,ODE的面积为15,若动点P在x轴上,则PD+PE的最小值是_18如图,在ABC中,D、E分别是边AB、AC上的两点,且DEBC,BDAE,若AB12cm,AC24cm,则AE_三、

6、解答题(共78分)19(8分)如图,在平面直角坐标系中,已知的三个项点的坐标分别是、.(1)在轴左侧画,使其与关于点位似,点、分别于、对应,且相似比为;(2)的面积为_.20(8分)有六张完全相同的卡片,分两组,每组三张,在组的卡片上分别画上“,”,组的卡片上分别画上“,”,如图所示(1)若将卡片无标记的一面朝上摆在桌上,再分别从两组卡片中随机各抽取一张,求两张卡片上标记都是“”的概率(请用“树形图法”或“列表法”求解)(2)若把两组卡片无标记的一面对应粘贴在一起得到三张卡片,其正、反面标记如图所示,将卡片正面朝上摆在桌上,并用瓶盖盖住标记若随机揭开其中一个盖子,看到的标记是“”的概率是多少?

7、若揭开盖子,看到的卡片正面标记是“”后,猜想它的反面也是“”,求猜对的概率21(8分)如图,直线与轴交于点,与轴交于点,抛物线与直线交于,两点,点是抛物线的顶点 (1)求抛物线的解析式;(2)点是直线上方抛物线上的一个动点,其横坐标为,过点作轴的垂线,交直线于点,当线段的长度最大时,求的值及的最大值(3)在抛物线上是否存在异于、的点,使中边上的高为,若存在求出点的坐标;若不存在请说明理由22(10分)如图,甲、乙两人在玩转盘游戏时,准备了两个可以自由转动的转盘A、B,每个转盘被分成面积相等的几个扇形,并在每一个扇形内标上数字.游戏规则:同时转动两个转盘,当转盘停止后,指针所指区域的数字之和为0

8、时,甲获胜;数字之和为1时,乙获胜.如果指针恰好指在分割线上,那么重转一次,直到指针指向某一区域为止.(1)用画树状图或列表法求乙获胜的概率;(2)这个游戏规则对甲、乙双方公平吗?请判断并说明理由.23(10分)已知菱形的两条对角线长度之和为40厘米,面积S(单位:cm2)随其中一条对角线的长x(单位:cm)的变化而变化(1)请直接写出S与x之间的函数关系式,并写出自变量x的取值范围(2)当x取何值时,菱形的面积最大,最大面积是多少?24(10分)如图,AB为O直径,点D为AB下方O上一点,点C为弧ABD中点,连接CD,CA(1)若ABD,求BDC(用表示);(2)过点C作CEAB于H,交AD

9、于E,CAD,求ACE(用表示);(3)在(2)的条件下,若OH5,AD24,求线段DE的长25(12分)如图,BC是O的直径,点A在O上,ADBC垂足为D,弧AE弧AB,BE分别交AD、AC于点F、G(1)判断FAG的形状,并说明理由;(2)如图若点E与点A在直径BC的两侧,BE、AC的延长线交于点G,AD的延长线交BE于点F,其余条件不变(1)中的结论还成立吗?请说明理由(3)在(2)的条件下,若BG26,DF5,求O的直径BC26为测量某特种车辆的性能,研究制定了行驶指数,而的大小与平均速度和行驶路程有关(不考虑其他因素),由两部分的和组成,一部分与成正比,另一部分与成正比在实验中得到了

10、表格中的数据:速度路程指数(1)用含和的式子表示;(2)当行驶指数为,而行驶路程为时,求平均速度的值;(3)当行驶路程为时,若行驶指数值最大,求平均速度的值参考答案一、选择题(每题4分,共48分)1、C【分析】如图,连接OD、OC根据圆心角、弧、弦的关系证得AOD是等边三角形,则O的半径长为BC=4cm;然后由圆的周长公式进行计算【详解】解:如图,连接OC、ODAB是O的直径,四边形ABCD内接于O,BC=CD=DA=4,弧AD=弧CD=弧BC,AOD=DOC=BOC=60又OA=OD,AOD是等边三角形,OA=AD=4,O的周长=24=8故选:C【点睛】本题考查了圆心角、弧、弦的关系,等边三

11、角形的判定与性质在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对弦的弦心距也相等,即四者有一个相等,则其它三个都相等2、B【分析】先解不等式,再解一元二次方程,利用概率公式得到概率【详解】解得,解得,的值是不等式组的解,方程,解得,不是方程的解,或满足条件的的值为,(个)概率为故选3、C【分析】根据解析式,求出函数值y等于2时对应的月份,依据开口方向以及增减性,再求出y小于2时的月份即可解答【详解】解:当y=2时,n=2或者n=1又抛物线的图象开口向下,1月时,y2;2月和1月时,y=2该企业一年中应停产的月份是1月、2月、1月故选:C【点睛】本题考查二次函数的应用能将二次函数由一

12、般式化为顶点式并理解二次函数的性质是解决此题的关键4、C【解析】试题分析:根据中心对称图形与轴对称图形的概念依次分析即可是只是中心对称图形,只是轴对称图形,故选C.考点:本题考查的是中心对称图形与轴对称图形点评:解答本题的关键是熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫对称轴;在同一平面内,如果把一个图形绕某一点旋转180,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形5、A【分析】根据位似变换的概念、相似多边形的判定定理和性质定理判断【详解】解:位似图形都相似,本选项说法正确;两个等腰三角形不一定相似,本选项说法错误;两个相似多

13、边形的面积比是2:3,则周长比为,本选项说法错误;若一个矩形的四边分别比另一个矩形的四边长2,那么这两个矩形对应边的比不一定相等,两个矩形不一定一定相似,本选项说法错误;正确的只有;故选:A【点睛】本题考查的是位似变换、相似多边形的判定和性质,掌握位似变换的概念、相似多边形的判定定理和性质定理是解题的关键6、B【解析】试题解析:设等边三角形的边长是a,则等边三角形的周率a1=3设正方形的边长是x,由勾股定理得:对角线是x,则正方形的周率是a1=11.818,设正六边形的边长是b,过F作FQAB交BE于Q,得到平行四边形ABQF和等边三角形EFQ,直径是b+b=1b,正六边形的周率是a3=3,圆

14、的周率是a4=,a4a3a1故选 B考点:1.正多边形和圆;1.等边三角形的判定与性质;3.多边形内角与外角;4.平行四边形的判定与性质7、B【分析】利用平行四边形的判定、平行线的性质、菱形的判定和矩形的性质分别对各命题进行判断即可【详解】解:根据平行四边形的判定定理可知,对角线互相平分的四边形是平行四边形,故是真命题;两直线平行,内错角相等,故为假命题;根据菱形的判定定理,对角线互相垂直且平分的四边形是菱形,故是假命题;根据矩形的性质,矩形的对角线相等,故是真命题;故选:B【点睛】本题考查了命题与定理的知识,解题的关键是熟悉平行四边形的判定、平行线的性质、菱形的判定及矩形的性质,难度不大8、

15、B【分析】根据圆心角、弧、弦的关系对结论进行逐一判断即可【详解】解:与的大小关系不确定,与不一定相等,故选项A错误;平分,故选项B正确;与的大小关系不确定,与不一定相等,选项C错误;与的大小关系不确定,选项D错误;故选B【点睛】本题考查的是圆心角、弧、弦的关系,在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等9、A【分析】连接BO,根据垂径定理得出BD,在BOD中利用勾股定理解出OD,从而得出AD,在ABD中利用勾股定理解出AB即可【详解】连接OB,AOBC,AO过O,BC4,BDCD2,BDO90,由勾股定理得:OD,ADOA+OD+4,在R

16、tADB中,由勾股定理得:AB2,故选:A【点睛】本题考查圆的垂径定理及勾股定理的应用,关键在于熟练掌握相关的基础性质10、C【解析】根据题意可以列出相应的一元二次方程,本题得以解决【详解】由题意可得,18(1+x)233,故选:C【点睛】本题考查由实际问题抽象出一元二次方程,解答本题的关键是明确题意,列出相应的一元二次方程,这是一道典型的增长率问题11、B【详解】解:抛物线与x轴有2个交点,b24ac0,所以正确;抛物线的对称轴为直线x=1,而点(1,0)关于直线x=1的对称点的坐标为(3,0),方程ax2+bx+c=0的两个根是x1=1,x2=3,所以正确;x=1,即b=2a,而x=1时,

17、y=0,即ab+c=0,a+2a+c=0,所以错误;抛物线与x轴的两点坐标为(1,0),(3,0),当1x3时,y0,所以错误;抛物线的对称轴为直线x=1,当x1时,y随x增大而增大,所以正确故选:B【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a0),二次项系数a决定抛物线的开口方向和大小:当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab0),对称轴在y轴左;当a与b异号时(即ab0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由决

18、定:=b24ac0时,抛物线与x轴有2个交点;=b24ac=0时,抛物线与x轴有1个交点;=b24ac0时,抛物线与x轴没有交点12、A【分析】连接OB,根据O的半径为5,CD2得出OD的长,再由垂径定理的推论得出OCAB,由勾股定理求出BD的长,进而可得出结论【详解】解:连接OB,如图所示:O的半径为5,OD3,ADDB,OCAB,ODB90,BDAB2BD1故选:A【点睛】本题主要考查的是圆中的垂径定理“垂直于弦的直径平分弦且平分这条弦所对的两条弧”,掌握垂径定理是解此题的关键.二、填空题(每题4分,共24分)13、1【分析】由题意直接利用位似图形的性质,进行分析计算即可得出答案【详解】解

19、:ABC与DEF是两个位似图形,它们的位似比为,DEF的面积是ABC的面积的4倍,SABC=10,SDEF=1故答案为:1【点睛】本题主要考查位似变换,熟练掌握位似图形的面积比是位似比的平方比是解题的关键14、12【分析】由旋转可知,由全等的性质及等边三角形的性质可知是等边三角形,利用勾股定理求出AD长,可得ADE的周长.【详解】解:ABC是等边三角形,D为BC中点,AB=8在中,根据勾股定理得由旋转可知 是等边三角形 所以ADE的周长为cm.故答案为:【点睛】本题主要考查了等边三角形的判定和性质,灵活利用等边三角形的性质是解题的关键.15、【分析】根据黄金分割的概念得到 ,把 代入计算即可【

20、详解】P是线段AB的黄金分割点, 故答案为【点睛】本题考查了黄金分割点的应用,理解黄金分割点的比例并会运算是解题的关键16、1【分析】根据同一时刻物高与影长成正比即可得出结论【详解】解:设这栋楼的高度为hm,在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一栋楼的影长为60m,解得h=1(m)故答案为1【点睛】本题考查的是相似三角形的应用,熟知同一时刻物高与影长成正比是解答此题的关键17、【分析】根据所给的三角形面积等于长方形面积减去三个直角三角形的面积,求得B和E的坐标,然后E点关于x的对称得E,则E(9,4),连接DE,交x轴于P,此时,PD+PEPD+PEDE最小,利用勾股定

21、理即可求得E点关于x的对称得E,则E(9,4),连接DE,交x轴于P,此时,PD+PEPD+PEDE最小【详解】解:四边形OCBA是矩形,ABOC,OABC,BD3,AD6,AB9,设B点的坐标为(9,b),D(6,b),D、E在反比例函数的图象上,6bk,E(9,b),SODES矩形OCBASAODSOCESBDE9bkk3(bb)15,9b6bb15,解得:b6,D(6,6),E(9,4),作E点关于x的对称得E,则E(9,4),连接DE,交x轴于P,此时,PD+PEPD+PEDE最小,AB9,BE6+410,DE,故答案为【点睛】本题考查反比例函数系数k的几何意义,解题的关键是利用过某个

22、点,这个点的坐标应适合这个函数解析式;所给的面积应整理为和反比例函数上的点的坐标有关的形式,本题属于中等题型18、1cm【分析】由题意直接根据平行线分线段成比例定理列出比例式,进行代入计算即可得到答案【详解】解:DE/BC,即,解得:AE1故答案为:1cm【点睛】本题考查的是平行线分线段成比例定理,由题意灵活运用定理、找准对应关系是解题的关键三、解答题(共78分)19、(1)见解析;(2)1.【分析】(1)根据位似的性质得到点、的对应点D(-1,-1),E(-2,0),F(-2,2),连线即可得到位似图形;(2)利用底乘高的面积公式计算即可.【详解】(1)如图,(2)由图可知:E(-2,0),

23、F(-2,2);EF=2,SDEF,故答案为:1.【点睛】此题考查位似的性质,位似图形的画法,坐标系中三角形面积的求法,熟练掌握位似图形的关系是解题的关键.20、(1);(2);【分析】(1)画出树状图计算即可;(2)三张卡片上正面的标记有三种可能,分别为“,”,然后计算即可;正面标记为“”的卡片,其反面标记情况有两种可能,分别为“”和“”,计算即可;【详解】(1)解:根据题意,可画出如下树形图:从树形图可以看出,所有可能结果共9种,且每种结果出现的可能性相等,其中两张卡片上标记都是“”的结果有2种,(两张都是“”)(2)解:三张卡片上正面的标记有三种可能,分别为“,”,随机揭开其中一个盖子,

24、看到的标记是“”的概率为正面标记为“”的卡片,其反面标记情况有两种可能,分别为“”和“”,猜对反面也是“”的概率为【点睛】本题主要考查了概率的计算,准确理解题意是解题的关键21、(1);(2)当时,PM有最大值;(3)存在,理由见解析;,【分析】(1)先求得点、的坐标,再代入二次函数表达式即可求得答案;(2)设点横坐标为,则,求得PM关于的表达式,即可求解;(3)设,则,求得,根据等腰直角三角形的性质,求得,即可求得答案.【详解】(1),令,则,令,则,故点、的坐标分别为、,将、代入二次函数表达式为,解得:,故抛物线的表达式为:.(2)设点横坐标为,则,当时,PM有最大值;(3)如图,过作轴交

25、于点,交轴于点,作于,设,则,是等腰直角三角形,当中边上的高为时,即,当时,解得或,或,当时,解得或,或,综上可知存在满足条件的点,其坐标为,【点睛】本题主要考查的知识点有:利用待定系数法确定函数解析式、等腰直角三角形的判定和性质以及平行四边形的判定和性质;第(2)问中,利用二次函数求最值是解题的关键;最后一问利用两点之间的距离公式和等腰直角三角形的性质构建等式是解题的关键22、(1);(2)公平理由见解析.【解析】试题分析:依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出甲乙获胜的概率,比较即可试题解析:(1)列表得:由列表法可知:会产生12种结果,它们出现的机会

26、相等,其中和为1的有3种结果P(乙获胜)=;(2)公平P(乙获胜)=,P(甲获胜)=P(乙获胜)= P(甲获胜),游戏公平考点:1游戏公平性;2列表法与树状图法23、(1)Sx2+20 x,0 x40;(2)当x20时,菱形的面积最大,最大面积是1【分析】(1)直接利用菱形面积公式得出S与x之间的关系式;(2)利用配方法求出最值即可【详解】(1)由题意可得:,x为对角线的长,x0,40 x0,即0 x40;(2),即当x20时,菱形的面积最大,最大面积是1【点睛】本题考查二次函数的应用,熟练掌握菱形的性质,建立二次函数模型是解题的关键24、(1)BDC=;(2)ACE=;(3)DE=【分析】(

27、1)连接AD,设BDC,CAD,则CABBDC,证明DAB,90,ABD2,得出ABD2BDC,即可得出结果;(2)连接BC,由直角三角形内角和证明ACEABC,由点C为弧ABD中点,得出ADCCADABC,即可得出结果;(3)连接OC,证明COBABD,得出OCHABD,则,求出BD2OH10,由勾股定理得出AB26,则AO13,AHAOOH18,证明AHEADB,得出,求出AE,即可得出结果【详解】(1)连接AD,如图1所示:设BDC,CAD,则CABBDC,点C为弧ABD中点,ADCCAD,DAB,AB为O直径,ADB90,+90,90,ABD90DAB90()9090+2,ABD2BD

28、C,BDCABD;(2)连接BC,如图2所示:AB为O直径,ACB90,即BAC+ABC90,CEAB,ACE+BAC90,ACEABC,点C为弧ABD中点,ADCCADABC,ACE;(3)连接OC,如图3所示:COB2CAB,ABD2BDC,BDCCAB,COBABD,OHCADB90,OCHABD,BD2OH10,AB26,AO13,AHAO+OH13+518,EAHBAD,AHEADB90,AHEADB,即,AE,DEADAE24【点睛】本题考查了圆周角定理、相似三角形的判定和性质、三角形内角和定理、勾股定理等知识;正确作出辅助线是解题的关键25、(1)FAG是等腰三角形,理由见解析;(2)成立,理由见解析;(3)BC【分析】(1)首先根据圆周角定理及垂直的定义得到BAD+CAD90,C+CAD90,从而得到BADC,然后利用等弧对等角等知识得到AFBF,从而证得FAFG,判定等腰三角形;(2)成立,同(1)的证明方法即可得答案;(3)由(2)知DACAGB,推出BADABG,得到F为BG的中点根据直角三角形的性质得到AFBF

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论