版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022-2023学年九上数学期末模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每小题3分,共30分)1已知:如图,矩形ABCD中,AB2cm,AD3cm
2、点P和点Q同时从点A出发,点P以3cm/s的速度沿AD方向运动到点D为止,点Q以2cm/s的速度沿ABCD方向运动到点D为止,则APQ的面积S(cm2)与运动时间t(s)之间函数关系的大致图象是()ABCD2我们要遵守交通规则,文明出行,做到“红灯停,绿灯行”,小刚每天从家到学校需经过三个路口,且每个路口都安装了红绿灯,每个路口红灯和绿灯亮的时间相同,那么小刚从家出发去学校,他遇到两次红灯的概率是( )ABCD3如图,在给定的一张平行四边形纸片上作一个菱形甲、乙两人的作法如下:甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形乙:分别
3、作A,B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF是菱形根据两人的作法可判断()A甲正确,乙错误B乙正确,甲错误C甲、乙均正确D甲、乙均错误4已知抛物线与轴没有交点,那么该抛物线的顶点所在的象限是( )A第一象限B第二象限C第三象限D第四象限5如图,已知抛物线y1x11x,直线y11xb相交于A,B两点,其中点A的横坐标为1当x任取一值时,x对应的函数值分别为y1,y1,取m(|y1y1|y1y1)则( )A当x1时,my1Bm随x的增大而减小C当m1时,x0Dm16二次函数图象的顶点坐标是()ABCD7一次抽奖活动特等奖的中奖率为,把用科学记数法表示为()ABC
4、D8如图,点是矩形的边,上的点,过点作于点,交矩形的边于点,连接若,则的长的最小值为( )ABCD9下列图形中,不是中心对称图形的是( )ABCD10小悦乘座中国最高的摩天轮“南昌之星”,从最低点开始旋转一圈,她离地面的高度y(米)与旋转时间x(分)之间的关系可以近似地用二次函数来刻画经测试得出部分数据如表根据函数模型和数据,可推断出南昌之星旋转一圈的时间大约是( )x(分)13.514.716.0y(米)156.25159.85158.33A32分B30分C15分D13分二、填空题(每小题3分,共24分)11如图,在直角三角形中,是斜边上的高,则的值为_. 12一次测试,包括甲同学在内的6名
5、同学的平均分为70分,其中甲同学考了45分,则除甲以外的5名同学的平均分为_分13如图,在平面直角坐标系中,直线l的函数表达式为,点的坐标为(1,0),以为圆心,为半径画圆,交直线于点,交轴正半轴于点,以为圆心,为半径的画圆,交直线于点,交轴的正半轴于点,以为圆心,为半径画圆,交直线与点,交轴的正半轴于点, 按此做法进行下去,其中弧的长为_14在锐角中,0,则C的度数为_15如图,王师傅在一块正方形钢板上截取了宽的矩形钢条,剩下的阴影部分的面 积是,则原来这块正方形钢板的边长是_cm.16如图,将ABC绕点A逆时针旋转的到ADE,点C和点E是对应点,若CAE=90,AB=1,则BD=_17在某
6、市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y(米)与水平距离x(米)之间的关系为,由此可知该生此次实心球训练的成绩为_米18在一个不透明的口袋中装有5个除了标号外其余都完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号小于4的概率为_三、解答题(共66分)19(10分)如图,在以线段AB为直径的O上取一点,连接AC、BC,将ABC沿AB翻折后得到ABD(1)试说明点D在O上;(2)在线段AD的延长线上取一点E,使AB2=ACAE,求证:BE为O的切线;(3)在(2)的条件下,分别延长线段AE、CB相交于点F,若BC=2,AC=4
7、,求线段EF的长.20(6分)文明交流互鉴是推动人类文明进步和世界和平发展的重要动力2019年5月“ 亚洲文明对话大会”在北京成功举办,引起了世界人民的极大关注某市一研究机构为了了解1060岁年龄段市民对本次大会的关注程度,随机选取了100名年龄在该范围内的市民进行了调查,并将收集到的数据制成了尚不完整的频数分布表、频数分布直方图和扇形统计图,如下所示:(1)请直接写出_,_,第3组人数在扇形统计图中所对应的圆心角是_度(2)请补全上面的频数分布直方图(3)假设该市现有1060岁的市民300万人,问4050岁年龄段的关注本次大会的人数约有多少?21(6分)化简:,并从中取一个合适的整数代入求值
8、.22(8分)一家公司招考员工,每位考生要在A、B、C、D、E这5道试题中随机抽出2道题回答,规定答对其中1题即为合格已知某位考生会答A、B两题,试求这位考生合格的概率23(8分)(l)计算:;(2)解方程.24(8分)如图,抛物线与坐标轴分别交于,三点,连接,(1)直接写出,三点的坐标;(2)点是线段上一点(不与,重合),过点作轴的垂线交抛物线于点,连接若点关于直线的对称点恰好在轴上,求出点的坐标;(3)在平面内是否存在一点,使关于点的对称(点,分别是点,的对称点)恰好有两个顶点落在该抛物线上?若存在,求出点的坐标;若不存在,说明理由25(10分)如图,在四边形ABCD中,ADBC,AD=2
9、,AB=,以点A为圆心,AD为半径的圆与BC相切于点E,交AB于点F(1)求ABE的大小及的长度;(2)在BE的延长线上取一点G,使得上的一个动点P到点G的最短距离为,求BG的长26(10分)如图,甲分为三等分数字转盘,乙为四等分数字转盘,自由转动转盘(1)转动甲转盘,指针指向的数字小于3的概率是 ;(2)同时自由转动两个转盘,用列举的方法求两个转盘指针指向的数字均为奇数的概率参考答案一、选择题(每小题3分,共30分)1、C【分析】研究两个动点到矩形各顶点时的时间,分段讨论求出函数解析式即可求解【详解】解:分三种情况讨论:(1)当0t1时,点P在AD边上,点Q在AB边上,S,此时抛物线经过坐标
10、原点并且开口向上;(1)当1t15时,点P与点D重合,点Q在BC边上,S2,此时,函数值不变,函数图象为平行于t轴的线段;(2)当15t25时,点P与点D重合,点Q在CD边上,S2(71t)t+函数图象是一条线段且S随t的增大而减小故选:C【点睛】本题考查了二次函数与几何问题,用分类讨论的数学思想解题是关键,解答时注意研究动点到达临界点时的时间以此作为分段的标准,逐一分析求解2、B【分析】画树状图得出所有情况数和遇到两次红灯的情况数,根据概率公式即可得答案【详解】根据题意画树状图如下:共有8种等情况数,其中遇到两次红灯的有3种,则遇到两次红灯的概率是,故选:B【点睛】本题考查利用列表法或树状图
11、法求概率,用到的知识点为:概率=所求情况数与总情况数之比;根据树状图得到遇两次红灯的情况数是解题关键3、C【解析】试题分析:甲的作法正确:四边形ABCD是平行四边形,ADBCDAC=ACNMN是AC的垂直平分线,AO=CO在AOM和CON中,MAO=NCO,AO=CO,AOM=CON,AOMCON(ASA),MO=NO四边形ANCM是平行四边形ACMN,四边形ANCM是菱形乙的作法正确:如图,ADBC,1=2,2=1BF平分ABC,AE平分BAD,2=3,5=21=3,5=1AB=AF,AB=BEAF=BEAFBE,且AF=BE,四边形ABEF是平行四边形AB=AF,平行四边形ABEF是菱形故
12、选C4、D【分析】根据题目信息可知当y=0时,此时,可以求出a的取值范围,从而可以确定抛物线顶点坐标的符号,继而可以确定顶点所在的象限.【详解】解:抛物线与轴没有交点,时无实数根;即,解得,又的顶点的横坐标为:;纵坐标为:;故抛物线的顶点在第四象限.故答案为:D.【点睛】本题考查的知识点是抛物线与坐标轴的交点问题,解题的关键是根据抛物线与x轴无交点得出时无实数根,再利用根的判别式求解a的取值范围.5、D【分析】将点的横坐标代入,求得,将,代入求得,然后将与联立求得点的坐标,然后根据函数图象化简绝对值,最后根据函数的性质,可得函数的增减性以及的范围【详解】将代入,得,点的坐标为将,代入,得,将与
13、联立,解得:,或,点的坐标为当x1时,m(|y1y1|y1y1)= (y1y1y1y1)= y1,故错误;当时,当时,当时,当x1时,m随x的增大而减小,故错误;令,代入,求得:或(舍去),令,代入,求得:,当m1时,x0或,故错误m=,画出图像如图,D正确故选【点睛】本题主要考查的是二次函数与一次函数的综合,根据函数图象比较出与的大小关系,从而得到关于x的函数关系式,是解题的关键6、B【解析】根据题目中二次函数的顶点式,可以直接写出该函数的顶点坐标【详解】二次函数y=(x+2)2+6,该函数的顶点坐标为(2,6),故选:B【点睛】本题主要考查了二次函数的性质,关键是熟记:抛物线的顶点坐标是,
14、对称轴是7、D【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】0.00002=2101故选D【点睛】本题考查了用科学记数法表示较小的数,一般形式为a10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定8、A【分析】由可得APB=90,根据AB是定长,由定长对定角可知P点的运动轨迹是以AB为直径,在AB上方的半圆,取AB得中点为O,连结DO,DO与半圆的交点是DP的长为最小值时的位置,用DO减去圆的半径即可得出最小值【详解】解:,AP
15、B=90,AB=6是定长,则P点的运动轨迹是以AB为直径,在AB上方的半圆,取AB得中点为O,连结DO,DO与半圆的交点是DP的长为最小值时的位置,如图所示:,由勾股定理得:DO=5,即的长的最小值为2,故选A【点睛】本题属于综合难题,主要考查了直径所对的角是圆周角的应用:由定弦对定角可得动点的轨迹是圆,发现定弦和定角是解题的关键9、A【详解】解:根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合因此,A、不是中心对称图形,故本选项正确;B、是中心对称图形,故本选项错误;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误故选A10、B【分析】利用二次函
16、数的性质,由题意,最值在自变量大于14.7小于16.0之间,由此不难找到答案【详解】最值在自变量大于14.7小于16.0之间,所以最接近摩天轮转一圈的时间的是30分钟故选:B【点睛】此题考查二次函数的实际运用,利用表格得出函数的性质,找出最大值解决问题二、填空题(每小题3分,共24分)11、【分析】证明 ,从而求出CD的长度,再求出即可【详解】是斜边上的高 解得(舍去)在 中故答案为:【点睛】本题考查了相似三角形的判定以及三角函数,掌握相似三角形的性质以及判定是解题的关键12、1【分析】求出6名学生的总分后,再求出除甲同学之外的5人的总分,进而求出平均分即可【详解】(70645)(61)1分,
17、故答案为:1【点睛】此题考查平均数的计算,掌握公式即可正确解答.13、.【分析】连接,易求得垂直于x轴,可得为圆的周长,再找出圆半径的规律即可解题【详解】连接,是上的点,直线l解析式为,为等腰直角三角形,即轴,同理,垂直于x轴,为圆的周长,以为圆心,为半径画圆,交x轴正半轴于点,以为圆心,为半径画圆,交x轴正半轴于点,以此类推,当时,故答案为【点睛】本题考查了圆周长的计算,考查了从图中找到圆半径规律的能力,本题中准确找到圆半径的规律是解题的关键14、75【分析】由非负数的性质可得: ,可求,从而利用三角形的内角和可得答案【详解】解:由题意,得sinA,cosB,解得A60,B45,C180AB
18、75,故答案为:75【点睛】本题考查了非负数的性质:偶次方、三角形的内角和定理,特殊角的三角函数值,掌握以上知识是解题的关键15、【分析】设原来正方形钢板的边长为xcm,根据题意可知阴影部分的矩形的长和宽分别为xcm,(x-4)cm,然后根据题意列出方程求解即可.【详解】解:设原来正方形钢板的边长为xcm,根据题意可知阴影部分的矩形的长和宽分别为xcm,(x-4)cm,根据题意可得: 整理得:解得:(负值舍去)故答案为:12.【点睛】本题考查一元二次方程的应用,根据题意列出阴影部分的面积的方程是本题的解题关键.16、【解析】将ABC绕点A逆时针旋转的到ADE,点C和点E是对应点,AB=AD=1
19、,BAD=CAE=90,BD=.故答案为:.17、1【分析】根据铅球落地时,高度,把实际问题可理解为当时,求x的值即可【详解】解:当时,解得,(舍去),故答案为1【点睛】本题考查了二次函数的实际应用,解析式中自变量与函数表达的实际意义;结合题意,选取函数或自变量的特殊值,列出方程求解是解题关键18、【分析】根据随机事件概率大小的求法,找准两点:符合条件的情况数目,全部情况的总数,二者的比值就是其发生的概率的大小【详解】解:根据题意可得:标号小于4的有1,2,3三个球,共5个球,任意摸出1个,摸到标号小于4的概率是故答案为:【点睛】本题考查概率的求法与运用,一般方法:如果一个事件有n种可能,而且
20、这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率三、解答题(共66分)19、(1)证明见解析;(2)证明见解析;(3)EF=【解析】分析:(1)由翻折知ABCABD,得ADB=C=90,据此即可得;(2)由AB=AD知AB2=ADAE,即,据此可得ABDAEB,即可得出ABE=ADB=90,从而得证;(3)由知DE=1、BE=,证FBEFAB得,据此知FB=2FE,在RtACF中根据AF2=AC2+CF2可得关于EF的一元二次方程,解之可得详解:(1)AB为O的直径,C=90,将ABC沿AB翻折后得到ABD,ABCABD,ADB=C=90,点D在以AB为直径的O上;(2)ABCA
21、BD,AC=AD,AB2=ACAE,AB2=ADAE,即,BAD=EAB,ABDAEB,ABE=ADB=90,AB为O的直径,BE是O的切线;(3)AD=AC=4、BD=BC=2,ADB=90,AB=,解得:DE=1,BE=,四边形ACBD内接于O,FBD=FAC,即FBE+DBE=BAE+BAC,又DBE+ABD=BAE+ABD=90,DBE=BAE,FBE=BAC,又BAC=BAD,FBE=BAD,FBEFAB,即,FB=2FE,在RtACF中,AF2=AC2+CF2,(5+EF)2=42+(2+2EF)2,整理,得:3EF2-2EF-5=0,解得:EF=-1(舍)或EF=,EF=点睛:本
22、题主要考查圆的综合问题,解题的关键是掌握圆周角定理、翻折的性质、圆内接四边形的性质及相似三角形的判定与性质、勾股定理等知识点20、(1)25,20,126;(2)见解析;(2)60万人【分析】(1)用抽样人数第1组人数第3组人数第4组人数第5组人数,可得a的值,用第4组的人数抽样人数100%可以求得m的值,用360第3组人数在抽样中所占的比例可得第3组在扇形统计图中所对应的圆心角的度数;(2)根据(1)中a的值,可以将频数分布直方图补充完整;(3)用市民人数第4组(4050岁年龄段)的人数在抽样中所占的比例可以计算出4050岁年龄段的关注本次大会的人数约有多少【详解】(1)a=10053520
23、15=25,m%=(20100)100%=20%,第3组人数在扇形统计图中所对应的圆心角是:360126故答案为:25,20,126;(2)由(1)知,20 x30有25人,补全的频数分布直方图如图所示;(3)30060(万人)答:4050岁年龄段的关注本次大会的人数约有60万人【点睛】本题考查了频数分布直方图、频数分布表、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答21、-x-1,-1.【分析】先将原分式化简,然后根据分式有意义的条件代入适当的值即可.【详解】解:原式当时(不能取1或1,否则无意义)原式.【点睛】此题考查的是分式的化简求值题,掌握分式的运算法则
24、和分式有意义的条件是解决此题的关键.22、【详解】解:树状图为:从树状图看出,所有可能出现的结果共有20个,其中合格的结果有14个,所以,P(这位考生合格)= 答:这位考生合格的概率是23、(1);(2)【分析】(1)原式利用平方差公式和单项式乘以多项式把括号展开,再合并同类项即可得到答案;(2)方程变形后分解因式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【详解】(1),=;(2),解得,.【点睛】此题主要考查了一元二次方程的解法,正确掌握解题方法是解题的关键,同时还考查了实数和混合运算.24、(1),;(2);(3)存在点或,使关于点的对称恰好有两个顶点落在该抛物线上【分析】(1)分别令y=0,x=0,代入,即可得到答案;(2)由点与点关于直线对称,且点在y轴上,轴,得,易得直线的解析式为:,设点的横坐标为,则,列出关于t的方程,即可求解;(3)根据题意,平行于轴,平行于轴,点在点的右边,点在点的下方,设点的横坐标为,则的横坐标为,点的横坐标为,分三种情况讨论:若、在抛物线上,若、在抛物线上,不可能同时在抛物线上,即可得到答案【详解】(1)令y=0,代入,得,解得:,令x=0,代入 ,得: y=3,,;(2)点与点关于直线对称,且点在y
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房产买卖协议案例
- 临时借款补充协议范本
- 银行贷款续期合同
- 冰雪路面防滑安全行动
- 消防安全责任合同签订指南
- 绿化工程劳务分包协议
- 招标采购文件编写标准
- 五金工具采购合同
- 管理保证书优化企业资源配置的关键
- 招标文件备案快速指南
- 收购公司法律尽职调查合同(2篇)
- 绿色财政政策
- 第六单元多边形的面积 (单元测试)-2024-2025学年五年级上册数学人教版
- 《内外科疾病康复学》课程教学大纲
- 公路养护培训知识
- 国家安全教育高教-第六章坚持以经济安全为基础
- 锂电储能产品设计及案例详解-笔记
- 广东开放大学2024年秋《国家安全概论(S)(本专)》形成性考核作业参考答案
- 期末模拟考试卷01-2024-2025学年上学期高二思想政治课《哲学与人生》原题卷+答案卷
- 小儿静脉留置针操作与护理
- 期末试卷(试题)-2024-2025学年三年级上册数学苏教版
评论
0/150
提交评论