版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、人教版八年级数学下册第十八章-平行四边形专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在长方形ABCD中,AB6,BC8,点E是BC边上一点,将ABE沿AE折叠,使点B落在点F处,连接CF
2、,当CEF为直角三角形时,则BE的长是( )A4B3C4或8D3或62、如图,矩形ABCD中,DEAC于E,若ADE2EDC,则BDE的度数为( )A36B30C27D183、如图,在ABC中,ABC90,AC18,BC14,D,E分别是AB,AC的中点,连接DE,BE,点M在CB的延长线上,连接DM,若MDBA,则四边形DMBE的周长为( )A16B24C32D404、在RtABC中,C90,若D为斜边AB上的中点,AB的长为10,则DC的长为( )A5B4C3D25、如图,点E是ABC内一点,AEB90,D是边AB的中点,延长线段DE交边BC于点F,点F是边BC的中点若AB6,EF1,则线
3、段AC的长为()A7BC8D96、如图,把一张长方形纸片ABCD沿对角线AC折叠,点B的对应点为点B,AB与DC相交于点E,则下列结论正确的是 ( )ADABCABBACDBCD CADAEDAECE7、如图,在ABC中,AC=BC=8,BCA=60,直线ADBC于点D,E是AD上的一个动点,连接EC,将线段EC绕点C按逆时针方向旋转60得到FC,连接DF,则在点E的运动过程中,DF的最小值是( )A1B1.5C2D48、下列A:B:C:D的值中,能判定四边形ABCD是平行四边形的是( )A1:2:3:4B1:4:2:3C1:2:2:1D3:2:3:29、如图,在中,点,分别是,上的点,点,分
4、别是,的中点,则的长为( )A4B10C6D810、将一张长方形纸片ABCD按如图所示的方式折叠,AE、AF为折痕,点B、D折叠后的对应点分别为、,若10,则EAF的度数为()A40B45C50D55第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知正方形ABCD的一条对角线长为2,则它的面积是_2、如图,在矩形ABCD中,对角线AC,BD相交于O,EF过点O分别交AB,CD于E,F,已知AB8cm,AD5cm,那么图中阴影部分面积为_cm23、如图,在ABC中,D,E分别是边AB,AC的中点,B50现将ADE沿DE折叠点A落在三角形所在平面内的点为A1,则BDA1的
5、度数为 _4、如图中,分别是由个、个、个正方形连接成的图形,在图中,;在图中,;通过以上计算,请写出图中_(用含的式子表示)5、如图,已知RtACB,ACB90,ABC60,AB8,点D在CB所在直线上运动,以AD为边作等边三角形ADE,则CB_在点D运动过程中,CE的最小值为 _三、解答题(5小题,每小题10分,共计50分)1、如图,已知ABC中,D是AB上一点,ADAC,AECD,垂足是E,F是BC的中点,求证:BD2EF2、如图所示,正方形中,点E,F分别为BC,CD上一点,点M为EF上一点,M关于直线AF对称(1)求证:B,M关于AE对称;(2)若的平分线交AE的延长线于G,求证:3、
6、如图,在四边形ABCD中,ABDC,ABAD,对角线AC,BD交于点O,AC平分BAD,过点C作CEAB交AB的延长线于点E,连接OE(1)求证:四边形ABCD是菱形;(2)若AB,BD2,求OE的长4、如图,平行四边形ABCD中,点E、F分别在CD、BC的延长线上,(1)求证:D是EC中点;(2)若,于点F,直接写出图中与CF相等的线段5、如图:在中,点为的中点,点为直线上的动点(不与点,重合),连接,以为边在的上方作等边,连接(1)是_三角形;(2)如图1,当点在边上时,运用(1)中的结论证明;(3)如图2,当点在的延长线上时,(2)中的结论是否依然成立?若成立,请加以证明,若不成立,请说
7、明理由-参考答案-一、单选题1、D【解析】【分析】当为直角三角形时,有两种情况:当点F落在矩形内部时连接,先利用勾股定理计算出,根据折叠的性质得,而当为直角三角形时,只能得到,所以点A、F、C共线,即沿折叠,使点B落在对角线上的点F处,则,可计算出然后利用勾股定理求解即可;当点F落在边上时此时为正方形,由此即可得到答案【详解】解:当为直角三角形时,有两种情况:当点F落在矩形内部时,如图所示连接,在中,ABE沿折叠,使点B落在点F处,BE=EF,当为直角三角形时,只能得到,点A、F、C共线,即ABE沿折叠,使点B落在对角线上的点F处,设BE=EF=x,则EC=BC-BE=8-x,解得,BE=3;
8、当点F落在边上时,如图所示,由折叠的性质可知AB=AF,BE=EF,AEF=B=90,FEC=90,为正方形,综上所述,BE的长为3或6故选D【点睛】本题考查折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等也考查了矩形的性质,正方形的性质与判定以及勾股定理解题的关键是要注意本题有两种情况,需要分类讨论,避免漏解2、B【解析】【分析】根据已知条件可得以及的度数,然后求出各角的度数便可求出【详解】解:在矩形ABCD中,故选:B【点睛】题目主要考查矩形的性质,三角形内角和及等腰三角形的性质,理解题意,综合运用各个性质是解题关键3、C【解析】【分析】由中点的定义可得AE=CE,AD=BD,根据
9、三角形中位线的性质可得DE/BC,DE=BC,根据平行线的性质可得ADE=ABC=90,利用ASA可证明MBDEDA,可得MD=AE,DE=MB,即可证明四边形DMBE是平行四边形,可得MD=BE,进而可得四边形DMBE的周长为2DE+2MD=BC+AC,即可得答案【详解】D,E分别是AB,AC的中点,AE=CE,AD=BD,DE为ABC的中位线,DE/BC,DE=BC,ABC90,ADE=ABC=90,在MBD和EDA中,MBDEDA,MD=AE,DE=MB,DE/MB,四边形DMBE是平行四边形,MD=BE,AC18,BC14,四边形DMBE的周长=2DE+2MD=BC+AC=18+14=
10、32故选:C【点睛】本题考查全等三角形的判定与性质、三角形中位线的性质及平行四边形的判定与性质,三角形中位线平行于第三边且等于第三边的一半;有一组对边平行且相等的四边形是平行四边形;熟练掌握相关性质及判定定理是解题关键4、A【解析】【分析】利用直角三角形斜边的中线的性质可得答案【详解】解:C=90,若D为斜边AB上的中点,CD=AB,AB的长为10,DC=5,故选:A【点睛】此题主要考查了直角三角形斜边的中线,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半5、C【解析】【分析】根据直角三角形的性质求出DE,由EF=1,得到DF,再根据三角形中位线定理即可求出线段AC的长【详解】解:AEB
11、90,D是边AB的中点,AB6,DEAB3,EF1,DFDE+EF3+14D是边AB的中点,点F是边BC的中点,DF是ABC的中位线,AC2DF8故选:C【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,三角形中位线定理,求出DF的长是解题的关键6、D【解析】【分析】根据翻折变换的性质可得BAC=CAB,根据两直线平行,内错角相等可得BAC=ACD,从而得到ACD=CAB,然后根据等角对等边可得AE=CE,从而得解【详解】解:矩形纸片ABCD沿对角线AC折叠,点B的对应点为B,BAC=CAB,ABCD,BAC=ACD,ACD=CAB,AE=CE,结论正确的是D选项故选D.【点睛】本
12、题考查了翻折变换的性质,平行线的性质,矩形的对边互相平行,等角对等边的性质,熟记各性质并准确识图是解题的关键7、C【解析】【分析】取线段AC的中点G,连接EG,根据等边三角形的性质以及角的计算即可得出CD=CG以及FCD=ECG,由旋转的性质可得出EC=FC,由此即可利用全等三角形的判定定理SAS证出FCDECG,进而即可得出DF=GE,再根据点G为AC的中点,即可得出EG的最小值,此题得解【详解】解:取线段AC的中点G,连接EG,如图所示AC=BC=8,BCA=60,ABC为等边三角形,且AD为ABC的对称轴,CD=CG=AB=4,ACD=60,ECF=60,FCD=ECG,在FCD和ECG
13、中,FCDECG(SAS),DF=GE当EGBC时,EG最小,点G为AC的中点,此时EG=DF=CD=BC=2故选:C【点睛】本题考查了等边三角形的性质以及全等三角形的判定与性质,三角形中位线的性质,解题的关键是通过全等三角形的性质找出DF=GE,本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边是关键8、D【解析】【分析】两组对角分别相等的四边形是平行四边形,所以A和C是对角,B和D是对角,对角的份数应相等【详解】解:根据平行四边形的判定:两组对角分别相等的四边形是平行四边形,所以只有D符合条件故选:D【点睛】本题考查了平行四边形的判定,在应用判定定理判定平行四边形
14、时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法9、B【解析】【分析】根据三角形中位线定理得到PD=BF=6,PDBC,根据平行线的性质得到PDA=CBA,同理得到PDQ=90,根据勾股定理计算,得到答案【详解】解:C=90,CAB+CBA=90,点P,D分别是AF,AB的中点,PD=BF=6,PD/BC,PDA=CBA,同理,QD=AE=8,QDB=CAB,PDA+QDB=90,即PDQ=90,PQ=10,故选:B【点睛】本题考查的是三角形中位线定理、勾股定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键10、A【解析】【分析】可以设EA
15、D,FAB,根据折叠可得DAFDAF,BAEBAE,用,表示DAF10+,BAE10+,根据四边形ABCD是矩形,利用DAB90,列方程10+10+10+90,求出+30即可求解【详解】解:设EAD,FAB,根据折叠性质可知:DAFDAF,BAEBAE,BAD10,DAF10+,BAE10+,四边形ABCD是矩形DAB90,10+10+10+90,+30,EAFBAD+DAE+FAB,10+,10+30,40则EAF的度数为40故选:A【点睛】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系二、填空题1、6【解析】【分析】正方形的面
16、积:边长的平方或两条对角线之积的一半,根据公式直接计算即可.【详解】解: 正方形ABCD的一条对角线长为2, 故答案为:【点睛】本题考查的是正方形的性质,掌握“正方形的面积等于两条对角线之积的一半”是解题的关键.2、10【解析】【分析】利用矩形性质,求证,将阴影部分的面积转为的面积,最后利用中线平分三角形的面积,求出的面积,即可得到阴影部分的面积【详解】解:四边形为矩形, , 在与中, 阴影部分的面积最后转化为了的面积,中, 平分, 阴影部分的面积:,故答案为:10【点睛】本题主要是考查了矩形的性质以全等三角形的判定与性质以及中线平分三角形面积,熟练利用矩形性质,证明三角形全等,将阴影部分面积
17、转化为其他图形的面积,这是解决本题的关键3、80【解析】【分析】由翻折的性质得ADEA1DE,由中位线的性质得DE/BC,由平行线的性质得ADEB50,即可解决问题【详解】解:由题意得:ADEA1DE;D、E分别是边AB、AC的中点,DE/BC,ADEBA1DE50,A1DA100,BDA118010080故答案为:80【点睛】本题主要考查了翻折变换及其应用问题;同时还考查了三角形的中位线定理等几何知识点熟练掌握各性质是解题的关键4、90n【解析】【分析】连接各小正方形的对角线,由图1中四边形内角和定理化简可得:;由图2中四边形内角和定理化简可得:;结合图形即可发现规律,求得结果【详解】解:连
18、接各小正方形的对角线,如下图: 图中,即,图中,即,以此类推,故答案为:【点睛】题目主要考查根据规律列出相应代数式,正方形性质等,理解题意,探索发现规律是解题关键5、 4 【解析】【分析】以AC为边作正AFC,并作FHAC,垂足为点H,连接FD、CE,由直角三角形可求BC4,由“SAS”可证FADCAE,得CEFD,CE最小即是FD最小,此时,故CE的最小值是【详解】解:以AC为边作正AFC,并作FHAC,垂足为点H,连接FD、CE,如图:在RtACB中,ACB90,ABC60,BAC30,AFC,ADE都是等边三角形,ADAE,AFAC,DAEFAC60, FAD+DAC=CAE+DAC,即
19、FADCAE,在FAD和CAE中,FADCAE(SAS),CEFD,CE最小即是FD最小,当FDBD时,FD最小,此时FDCDCHCHF90,四边形FDCH是矩形,CE的最小值是故答案为:4,【点睛】本题主要考查了等边三角形的性质,全等三角形的性质与判定,矩形的性质与判定,含30度角的直角三角形的性质,勾股定理等等,解题的关键在于能够熟练掌握等边三角形的性质三、解答题1、见解析【分析】先证明 再证明EF是CDB的中位线,从而可得结论.【详解】证明:ADAC,AECDCEEDF是BC的中点EF是CDB的中位线BD2EF【点睛】本题考查的是等腰三角形的性质,三角形的中位线的性质,掌握“三角形的中位
20、线平行于第三边且等于第三边的一半”是解题的关键.2、 (1)见解析;(2)见解析【分析】(1)由已知可证,即可得证;(2)由上述结论可得,再证AFG为等腰直角三角形【详解】解:连结AM,DM,BM,D、M关于直线AF对称,AF垂直平分DM,AD=AM,FD=FM,DAFMAF,AMF=ADF=AME=ABE=90,AM=AB,AE=AE,BAEMAE,EM=EB,AE垂直平分BM,B、M关于AE对称;(2)由(1)知BAEMAE,AE平分BEF,EAF=BAD=45,又AF平分DFE,FG平分EFC,AFG=90AFG为等腰直角三角形,【点睛】本题是四边形综合题,主要考查了轴对称的性质,等腰直
21、角三角形的判定,勾股定理,三角形的面积等知识,综合性较强,有一定难度准确作出辅助线是解题的关键有关45角的问题,往往利用全等,构造等腰直角三角形,使问题迅速获解3、(1)见解析;(2)2【分析】(1)先判断出OABDCA,进而判断出DACDCA,得出CDADAB,即可得出结论;(2)先判断出OEOAOC,再求出OB1,利用勾股定理求出OA,即可得出结论【详解】(1)证明:ABCD,OABDCA,AC为DAB的平分线,OABDAC,DCADAC,CDADAB,ABCD,四边形ABCD是平行四边形,ADAB,平行四边形ABCD是菱形;(2)解:四边形ABCD是菱形,OAOC,BDAC,CEAB,OEOAOC,BD2,OBBD1,在RtAOB中,AB,OB1,OA2,OEOA2【点睛】此题主要考查特殊平行四边形的判定与性质,解题的关键是菱形的判定与性质、勾股定理的应用4、(1)见祥解;(2)AB=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度全屋衣柜定制环保材料研究与开发合同3篇
- 2025年度全新官方版离婚协议书及婚姻财产分割执行监督协议3篇
- 二零二五年度内墙腻子施工与智能家居控制系统合同3篇
- 2025年度智能汽车买卖与数据共享合作协议3篇
- 二零二五年度租赁房屋租赁保证金收取合同2篇
- 2025年度公司企业间智慧城市建设项目借款合同2篇
- 2025年度新能源电池研发与生产合同3篇
- 二零二五年度互联网企业高管股权激励聘用合同3篇
- 二零二五年度纸装修工程节能评估合同3篇
- 2025年度养殖场季节性用工合同2篇
- 生产工艺过程说明书
- 辽宁省营口市鲅鱼圈区2023-2024学年数学四年级第一学期期末复习检测试题含答案
- 中小学铁路安全知识主题教育课件
- 工程施工安全交底
- 院内按病种分值付费(DIP)专题培训
- 2023-2024学年辽宁省调兵山市小学数学五年级上册期末高分通关试题
- 地方公务员考试:2022西藏真题及答案
- 电化学培优专题
- GB/T 631-2007化学试剂氨水
- GB/T 325.5-2015包装容器钢桶第5部分:200 L及以下闭口钢桶
- GB/T 25164-2010包装容器25.4mm口径铝气雾罐
评论
0/150
提交评论