2023学年四川省成都市高新南区数学九上期末学业质量监测试题含解析_第1页
2023学年四川省成都市高新南区数学九上期末学业质量监测试题含解析_第2页
2023学年四川省成都市高新南区数学九上期末学业质量监测试题含解析_第3页
2023学年四川省成都市高新南区数学九上期末学业质量监测试题含解析_第4页
2023学年四川省成都市高新南区数学九上期末学业质量监测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一

2、并交回。一、选择题(每题4分,共48分)1如图,在矩形中,对角线相交于点,动点由点出发,沿向点运动设点的运动路程为,的面积为,与的函数关系图象如图所示,则边的长为( )A3B4C5D62中,若,则的长为( )ABCD53如图,A、B、C是O上互不重合的三点,若CAOCBO20,则AOB的度数为( )A50B60C70D804若函数y的图象在其象限内y的值随x的增大而增大,则m的取值范围是( )Am2Bm2Cm-2Dm-25国家实施”精准扶贫“政策以来,很多贫困人口走向了致富的道路某地区2016年底有贫困人口9万人,通过社会各界的努力,2018年底贫困人口减少至1万人设2016年底至2018年底

3、该地区贫困人口的年平均下降率为,根据题意列方程得()ABCD6已知,满足,则的值是( )A16BC8D7下列关于x的方程中,一定是一元二次方程的为()Aax2+bx+c0Bx22(x+3)2Cx2+50Dx208已知的半径为,点的坐标为,点的坐标为,则点与的位置关系是( )A点在外B点在上C点在内D不能确定9在正方形网格中,如图放置,则( )ABCD10如图,四边形ABCD内接于,它的一个外角,分别连接AC,BD,若,则的度数为( )ABCD11两个相似三角形,其面积比为16:9,则其相似比为()A16:9B4:3C9:16D3:412如图,AB是O的直径,OC是O的半径,点D是半圆AB上一动

4、点(不与A、B重合),连结DC交直径AB与点E,若AOC=60,则AED的范围为( ) A0 AED 180B30 AED 120C60 AED 120D60 AED 30AED6060AED-1;(2)y=-x+3,y=-x2+2x+3;(3)D(),DF=【分析】(1)利用判别式解答即可;(2)将点A的坐标代入抛物线y=-x2+2x+m即可求出解析式,由抛物线的解析式求出点B(3,0),设直线BC的解析式为y=kx+b,将B(3,0),C(0,3)代入y=kx+b中即可求出直线BC的解析式;(3)由点D在抛物线上,设坐标为(x,-x2+2x+3),F在直线AB上,坐标为(x,-x+3) ,

5、得到DF=-x2+2x+3-(-x+3)=-x2+3x=,利用顶点式解析式的性质解答即可.【详解】(1)当抛物线与x轴有两个交点时,0,即4+4m0,m-1; (2)点A(-1,0)在抛物线y=-x2+2x+m上,-1-2+m=0,m=3,抛物线解析式为y=-x2+2x+3,且C(0,3),当x=0时,-x2+2x+3=0,解得x=-1,或x=3,B(3,0),设直线BC的解析式为y=kx+b,将B(3,0),C(0,3)代入y=kx+b中,得: ,解得,直线AB的解析式为y=-x+3;(3)点D在抛物线上,设坐标为(x,-x2+2x+3),F在直线AB上,坐标为(x,-x+3) ,DF=-x

6、2+2x+3-(-x+3)=-x2+3x=,当时,DF最大,为,此时D的坐标为().【点睛】此题考查了利用判别式已知抛物线与坐标轴的交点个数求未知数的取值范围,利用待定系数法求函数解析式,利用顶点式解析式的性质求出线段的最值.23、 (1),点坐标为;(2)点的坐标为;(3);当为-2时,四边形的面积最大,最大值为4.【分析】(1)用待定系数法即可求出抛物线解析式,然后化为顶点式求出点D的坐标即可;(2)利用轴对称-最短路径方法确定点M,然后用待定系数法求出直线AC的解析式,进而可求出点M的坐标;(3)先求出直线AD的解析式,表示出点F、G、P的坐标,进而表示出FG和FP的长度,然后即可判断出

7、线段与的数量关系;根据割补法分别求出AED和ACD的面积,然后根据列出二次函数解析式,利用二次函数的性质求解即可.【详解】解:(1)由抛物线与轴交于,两点得,解得,故抛物线解析式为,由得点坐标为;(2)在直线上存在一点,到点的距离与到点的距离之和最小.根据抛物线对称性,使的值最小的点应为直线与对称轴的交点,当时,设直线解析式为直线,把、分别代入得,解之得:,直线解析式为,把代入得,即当点到点的距离与到点的距离之和最小时的坐标为;(3),理由为:设直线解析式为,把、分别代入直线得,解之得:,直线解析式为,则点的坐标为,同理的坐标为,则,;, ,AO=3,DM=2,SACD=SADM+SCDM=.

8、 设点的坐标为,当为-2时,的最大值为1.,当为-2时,四边形的面积最大,最大值为4.【点睛】本题考查了待定系数法求函数解析式,一般式与顶点式的互化,轴对称最短的性质,坐标与图形的性质,三角形的面积公式,割补法求图形的面积,以及二次函数的性质,熟练掌握待定系数法和二次函数的性质是解答本题的关键.24、(1)b=-4,c=5;(2)当x2时,二次函数有最小值为1【分析】(1)利用待定系数法求解即可;(2)根据图象上点的坐标,可得出图象的对称轴及顶点坐标,即可得到答案【详解】(1)把(0,5),(1,2)代入y=x2+bx+c得:,解得:,;(2)由表格中数据可得:、时的函数值相等,都是2,此函数

9、图象的对称轴为直线,当x=2时,二次函数有最小值为1【点睛】本题考查了二次函数图象与性质及待定系数法求函数解析式,熟练掌握二次函数的图象与性质是解题的关键25、(1)(,x为整数) , (,x为整数);(2)该饲养场一月份的利润最大,最大利润是203万元【分析】(1)由图可知当时,当时,利用待定系数法可求出解析式;(2)设生猪饲养场月利润为W,分段讨论函数的最值,进行比较即可得出最大利润及月份.【详解】解:(1)当时,;当时,设,将(4,140),(12,220)代入得,解得y与x的函数关系式为:(,x为整数) ,(,x为整数) (2)设生猪饲养场月利润为W,当(x为整数)时,,因为,W随x的增大而减小,所以当x取最小值1时,万元 当(x为整数)时,,因为,所以当时,万元; 综上所述,该饲养场一月份的利润最大,最大利润是203万元【点睛】本题考查了

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论