




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1下列四个几何体中,主视图是三角形的是( )A B C D 2如图,在RtABC中,AC6,AB10,则sinA的值()ABCD3如图,AB是O的弦,BAC30,BC2,则O的直径等于( )A2B3C4D64下列命题正确的个数有()两边成比例且有一角对应相等的两个三角形相似;对角线相等的四边形是矩形;任意四
2、边形的中点四边形是平行四边形;两个相似多边形的面积比为2:3,则周长比为4:1A1个B2个C3个D4个5一元二次方程的根的情况为( )A有两个相等的实数根B有两个不相等的实数根C没有实数根D只有一个实数根6如图,在ABC中,点D在BC上一点,下列条件中,能使ABC与DAC相似的是()ABADCBBACBDACAB2BDBCDAC2CDCB7已知地球上海洋面积约为361 000 000km2,361 000 000这个数用科学记数法可表示为( )A3.61106B3.61107C3.61108D3.6110984月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东
3、方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439 000米将439 000用科学记数法表示应为( )A0.439106B4.39106C4.39105D1391039如图,矩形ABCD的顶点D在反比例函数(x0)的图象上,顶点B,C在x轴上,对角线AC的延长线交y轴于点E,连接BE,若BCE的面积是6,则k的值为()A6B8C9D1210以半径为2的圆内接正三角形、正方形、正六边形的边心距为三边作三角形,则( )A不能构成三角形B这个三角形是等腰三角形C这个三角形是直角三角形D这个三角形是钝角三角形二、填空题(每小题3分,共24分)11某中学去年举办竞赛,颁发
4、一二三等奖各若干名,获奖人数依次增加,各获奖学生获得的奖品价值依次减少(奖品单价都是整数元),其中有3人获得一等奖,每人获得的奖品价值34元,二等奖的奖品单价是5的倍数,获得三等奖的人数不超过10人,并且获得二三等奖的人数之和与二等奖奖品的单价相同.今年又举办了竞赛,获得一二三等奖的人数比去年分别增加了1人、2人、3人,购买对应奖品时发现单价分别上涨了6元、3元、2元.这样,今年购买奖品的总费用比去年增加了159元.那么去年购买奖品一共花了_元.12如图,点O是半径为3的圆形纸片的圆心,将这个圆形纸片按下列顺序折叠,使弧AB和弧BC都经过圆心O,则阴影部分的面积为_13已知二次函数的图象如图所
5、示,有下列结论:,;,其中正确的结论序号是_14若m22m1=0,则代数式2m24m+3的值为 15若2是方程x22kx+3=0的一个根,则方程的另一根为_16如图,A是反比例函数图象上的一点,点B、D在轴正半轴上,是关于点D的位似图形,且与的位似比是1:3,的面积为1,则的值为_17若A(-2,a),B(1,b),C(2,c)为二次函数的图象上的三点,则a,b,c的大小关系是_(用“”连接)18在、1、2五个数中,若随机取一个数作为反比例函数中的值,则该函数图象在第二、第四象限的概率是_三、解答题(共66分)19(10分)如图1是一种折叠台灯,将其放置在水平桌面上,图2是其简化示意图,测得其
6、灯臂长为灯翠长为,底座厚度为根据使用习惯,灯臂的倾斜角固定为,(1)当转动到与桌面平行时,求点到桌面的距离;(2)在使用过程中发现,当转到至时,光线效果最好,求此时灯罩顶端到桌面的高度(参考数据:,结果精确到个位).20(6分)如图,正方形ABCD,ABE是等边三角形,M是正方形ABCD对角线AC(不含点A)上任意一点,将线段AM绕点A逆时针旋转60得到AN,连接EN、DM求证:ENDM21(6分)为推进“传统文化进校园”活动,我市某中学举行了“走进经典”征文比赛,赛后整理参赛学生的成绩,将学生的成绩分为四个等级,并将结果绘制成不完整的条形统计图和扇形统计图请根据统计图解答下列问题:(1)参加
7、征文比赛的学生共有 人;(2)补全条形统计图;(3)在扇形统计图中,表示等级的扇形的圆心角为_ 图中 ;(4)学校决定从本次比赛获得等级的学生中选出两名去参加市征文比赛,已知等级中有男生一名,女生两名,请用列表或画树状图的方法求出所选两名学生恰好是一名男生和一名女生的概率22(8分)平面直角坐标系中,矩形OABC的顶点A,C的坐标分别为,点D是经过点B,C的抛物线的顶点(1)求抛物线的解析式;(2)点E是(1)中抛物线对称轴上一动点,求当EAB的周长最小时点E的坐标; (3)平移抛物线,使抛物线的顶点始终在直线CD上移动,若平移后的抛物线与射线BD只有一个公共点,直接写出平移后抛物线顶点的横坐
8、标的值或取值范围23(8分)某商场经营某种品牌的玩具,购进时的单价30元,根据市场调查:在一段时间内,销售单价是40元时,销售是600件,而销售单价每涨1元,就会少售出10件玩具(1)若设该种品脚玩具上x元(0 x60)元,销售利润为w元,请求出w关于x的函数关系式;(2)若想获得最大利润,应将销售价格定为多少,并求出此时的最大利润24(8分)如图,矩形ABCD中,AB6cm,AD8cm,点P从点A出发,以每秒一个单位的速度沿ABC的方向运动;同时点Q从点B出发,以每秒2个单位的速度沿BCD的方向运动,当其中一点到达终点后两点都停止运动设两点运动的时间为t秒(1)当t 时,两点停止运动;(2)
9、设BPQ的面积面积为S(平方单位)求S与t之间的函数关系式;求t为何值时,BPQ面积最大,最大面积是多少?25(10分)如图,点是的内心,的延长线交于点,交的外接圆于点,连接,过点作直线,使;(1)求证:直线是的切线;(2)若,求.26(10分)已知抛物线yax2+2x(a0)与y轴交于点A,与x轴的一个交点为B(1)请直接写出点A的坐标 ;当抛物线的对称轴为直线x4时,请直接写出a ;(2)若点B为(3,0),当m2+2m+3xm2+2m+5,且am0时,抛物线最低点的纵坐标为,求m的值;(3)已知点C(5,3)和点D(5,1),若抛物线与线段CD有两个不同的交点,求a的取值范围参考答案一、
10、选择题(每小题3分,共30分)1、B【解析】主视图是三角形的一定是一个锥体,只有B是锥体故选B2、A【分析】根据勾股定理得出BC的长,再根据sinA代值计算即可【详解】解:在RtABC中,AC6,AB10,BC8,sinA;故选:A【点睛】本题考查勾股定理及正弦的定义,熟练掌握正弦的表示是解题的关键.3、C【分析】如图,作直径BD,连接CD,根据圆周角定理得到DBAC30,BCD90,根据直角三角形的性质解答【详解】如图,作直径BD,连接CD,BDC和BAC是所对的圆周角,BAC30,BDCBAC30,BD是直径,BCD是BD所对的圆周角,BCD90,BD2BC4,故选:C【点睛】本题考查圆周
11、角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;半圆(或直径)所对的圆周角是直角;90圆周角所对的弦是直径;熟练掌握圆周角定理是解题关键4、A【分析】利用相似三角形的判定、矩形的判定方法、平行四边形的判定方法及相似多边形的性质分别判断后即可确定正确的选项【详解】两边成比例且夹角对应相等的两个三角形相似,故错误;对角线相等的平行四边形是矩形,故错误;任意四边形的中点四边形是平行四边形,正确;两个相似多边形的面积比2:3,则周长比为:,故错误,正确的有1个,故选A.【点睛】本题考查命题与定理,解题的关键是掌握相似三角形的判定、矩形的判定方法、平行四边形的判定方法
12、及相似多边形的性质.5、B【分析】直接利用判别式判断即可【详解】=一元二次方程有两个不等的实根故选:B【点睛】本题考查一元二次方程根的情况,注意在求解判别式时,正负号不要弄错了6、D【解析】根据相似三角形的判定即可【详解】ABC与DAC有一个公共角,即ACB=DCA,要使ABC与DAC相似,则还需一组角对应相等,或这组相等角的两边对应成比例即可,观察四个选项可知,选项D中的AC即ACCD=CBAC,正好是故选:D【点睛】本题考查了相似三角形的判定,熟练掌握相似三角形的判定是解题关键7、C【解析】分析:科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a
13、时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数解答:解:将361 000 000用科学记数法表示为3.611故选C8、C【分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】解:将439000用科学记数法表示为4.391故选C【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及
14、n的值9、D【分析】先设D(a,b),得出CO=-a,CD=AB=b,k=ab,再根据BCE的面积是6,得出BCOE=12,最后根据ABOE,BCEO=ABCO,求得ab的值即可【详解】设D(a,b),则CO=a,CD=AB=b,矩形ABCD的顶点D在反比例函数(x0)的图象上,k=ab,BCE的面积是6,BCOE=6,即BCOE=12,ABOE,即BCEO=ABCO,12=b(a),即ab=12,k=12,故选D考点:反比例函数系数k的几何意义;矩形的性质;平行线分线段成比例;数形结合10、C【分析】由于内接正三角形、正方形、正六边形是特殊内角的多边形,可构造直角三角形分别求出边心距的长,由
15、勾股定理逆定理可得该三角形是直角三角形,问题得解【详解】解:如图1, OC2,OD2sin301;如图2, OB2,OE2sin45;如图3, OA2,OD2cos30,则该三角形的三边分别为:1,12()2()2,该三角形是直角三角形,故选:C【点睛】本题主要考查多边形与圆,解答此题要明确:多边形的半径、边心距、中心角等概念,根据解直角三角形的知识解答是解题的关键二、填空题(每小题3分,共24分)11、257【分析】根据获奖人数依次增加,获得二三等奖的人数之和与二等奖奖品的单价相同,以及二等奖奖品单价为5的倍数,可知二等奖的单价为10或15,分别讨论即可得出答案.【详解】设二等奖人数为m,三
16、等奖人数为n,二等奖单价为a,三等奖单价为b,根据题意列表分析如下:一等奖二等奖三等奖去年获奖人数3mn奖品单价34ab今年获奖人数3+1=4m+2n+3奖品单价34+6=40a+3b+2今年购买奖品的总费用比去年增加了159元整理得,为5的倍数的值为10或15当时,代入得,解得不符合题意,舍去;当时,有3种情况:,代入得,解得,符合题意此时去年购买奖品一共花费元,代入得,解得,不符合题意,舍去,代入得,解得,不符合题意,舍去综上可得,去年购买奖品一共花费257元故答案为:257.【点睛】本题考查了方程与不等式的综合应用,难度较大,根据题意推出的取值,然后分类讨论是解题的关键.12、3【分析】
17、作ODAB于点D,连接AO,BO,CO,求出OAD=30,得到AOB=120,进而求得AOC=120,从而得到阴影面积为圆面积的,再利用面积公式求解.【详解】如图,作ODAB于点D,连接AO,BO,CO,OD=AO,OAD=30,AOB=2AOD=120,同理BOC=120,AOC=120,阴影部分的面积=S扇形AOC =3故答案为:3【点睛】本题考查了学生转化面积的能力,将不规则的面积转化为规则的面积是本题的解题关键.13、【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断【详解】由图象可知:抛物线开
18、口方向向下,则,对称轴直线位于y轴右侧,则a、b异号,即,抛物线与y轴交于正半轴,则,故正确;对称轴为,故正确;由抛物线的对称性知,抛物线与x轴的另一个交点坐标为,所以当时,即,故正确;抛物线与x轴有两个不同的交点,则,所以,故错误;当时,故正确故答案为【点睛】本题考查了考查了图象与二次函数系数之间的关系,二次函数系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定14、1【解析】试题分析:先求出m22m的值,然后把所求代数式整理出已知条件的形式并代入进行计算即可得解解:由m22m1=0得m22m=1,所以,2m24m+3=2(m22m)+3=21+3=1故答案为1
19、考点:代数式求值15、【解析】根据一元二次方程根与系数的关系即可得出答案.【详解】解:设方程的另一根为x1,又x2=2,2x1=3,解得x1=,故答案是:【点睛】本题主要考查一元二次方程根与系数的关系,应该熟练掌握两根之和,两根之积.16、8【分析】根据ABD是COD关于点D的位似图形,且ABD与COD的位似比是1:3,得出,进而得出假设BD=x,AE=4x,D0=3x,AB=y,根据ABD的面积为1,求出xy=2即可得出答案【详解】过A作AEx轴,ABD是COD关于点D的位似图形,且ABD与COD的位似是1:3, ,OE=AB,设BD=x,AB=yDO=3x,AE=4x,C0=3y,ABD的
20、面积为1,xy=1,xy=2,ABAE=4xy=8,故答案为:8.【点睛】此题考查位似变换,反比例函数系数k的几何意义,待定系数法求反比例函数解析式,解题关键在于作辅助线.17、abc【分析】先求出二次函数的对称轴,再根据点到对称轴的距离远近即可解答.【详解】由二次函数的解析式可知,对称轴为直线x=-1,且图象开口向上,点离对称轴距离越远函数值越大,-1-(-2)=1,1-(-1)=2,2-(-1)=3,abc,故答案为:abc.【点睛】此题主要考查二次函数图象上点的坐标特征,熟练掌握二次函数的顶点式以及图象上点的坐标特征是解答的关键.18、【分析】根据反比例函数的图象在第二、第四象限得出,最
21、后利用概率公式进行求解【详解】反比例函数的图象在第二、第四象限,该函数图象在第二、第四象限的概率是,故答案为:【点睛】本题考查了反比例函数的图象,等可能情况下的概率计算公式,熟练掌握反比例函数图象的特征与概率公式是解题的关键三、解答题(共66分)19、(1)点到桌面的距离为;(2)灯罩顶端到桌面的高度约为【分析】(1)作CMEF于M,BPAD于P,交EF于N,则CMBN,PN3,由直角三角形的性质得出APAB14,BPAP14,得出CMBNBPPN143即可;(2)作CMEF于M,作BQCM于Q,BPAD于P,交EF于N,则QBN90,CMBN,PN3,由(1)得QMBN,求出CBQ25,由三
22、角函数得出CQBCsin25,得出CMCQQM即可【详解】解当转动到与桌面平行时,如图2所示:作于于,交于则,即点到桌面的距离为;作于,作于于,交于,如图3所示:则,由得,在中,,即此时灯罩顶端到桌面的高度约为.【点睛】本题考查了解直角三角形、翻折变换的性质、含30角的直角三角形的性质等知识;通过作辅助线构造直角三角形是解题的关键20、证明见解析【分析】利用等边三角形的性质以及旋转的性质,即可判定EANDAM(SAS),依据全等三角形的对应边相等,即可得到ENDM【详解】证明:ABE是等边三角形,BAE60,BAEA,由旋转可得,MAN60,AMAN,BAEMAN,EANBAM,四边形ABCD
23、是正方形,BADA,BAMDAM45,EADA,EANDAM,在EAN和DAM中,EADAEAN=DAM,AN=AM,EANDAM(SAS),ENDM【点睛】本题主要考查了旋转的性质以及全等三角形的判定与性质,解决本题的关键是要熟练掌握旋转图形的性质和全等三角形的判定和性质.21、(1)30;(2)图见解析;(3)144,30;(4) 【分析】(1)根据等级为A的人数除以所占的百分比即可求出总人数;(2)根据条形统计图得出A、C、D等级的人数,用总人数减A、C、D等级的人数即可;(3)计算C等级的人数所占总人数的百分比,即可求出表示等级的扇形的圆心角和的值;(4)利用列表法或树状图法得出所有等
24、可能的情况数,找出一名男生和一名女生的情况数,即可求出所求的概率【详解】解:(1)根据题意得成绩为A等级的学生有3人,所占的百分比为10%,则310%=30,即参加征文比赛的学生共有30人;(2)由条形统计图可知A、C、D等级的人数分别为3人、12人、6人,则303126=9(人),即B等级的人数为9人补全条形统计图如下图 (3), ,m=30(4)依题意,列表如下:男女女男(男,女)(男,女)女(男,女)(女,女)女(男,女)(女,女)由上表可知总共有6种结果,每种结果出现的可能性相同,其中所选两名学生恰好是一男一女的结果共有4种,所以;或树状图如下由上图可知总共有6种结果,每种结果出现的可
25、能性相同,其中所选两名学生恰好是一男一女的结果共有4种,所以【点睛】本题考查了条形统计图、扇形统计图以及利用列表法或者树状图法求概率,弄清题意是解题的关键22、(1);(2);(3)或【分析】(1)根据题意可得出点B的坐标,将点B、C的坐标分别代入二次函数解析式,求出b、c的值即可(2)在对称轴上取一点E,连接EC、EB、EA,要使得EAB的周长最小,即要使EB+EA的值最小,即要使EA+EC的值最小,当点C、E、A三点共线时,EA+EC最小,求出直线AC的解析式,最后求出直线AC与对称轴的交点坐标即可(3)求出直线CD以及射线BD的解析式,即可得出平移后顶点的坐标,写出二次函数顶点式解析式,
26、分类讨论,如图:当抛物线经过点B时,将点B的坐标代入二次函数解析式,求出m的值,写出m的范围即可;当抛物线与射线恰好只有一个公共点H时,将抛物线解析式与射线解析式联立可得关于x的一元二次方程,要使平移后的抛物线与射线BD只有一个公共点,即要使一元二次方程有两个相等的实数根,即,列式求出m的值即可【详解】(1)矩形OABC,OC=AB,A(2,0),C(0,3),OA=2,OC=3,B(2,3),将点B,C的坐标分别代入二次函数解析式,抛物线解析式为:(2)如图,在对称轴上取一点E,连接EC、EB、EA,当点C、E、A三点共线时,EA+EC最小,即EAB的周长最小,设直线解析式为:y=kx+b,
27、将点A、C的坐标代入可得:,解得:,一次函数解析式为:=,D(1,4),令x=1,y=E(1,)(3)设直线CD解析式为:y=kx+b,C(0,3),D(1,4),,解得,直线CD解析式为:y=x+3,同理求出射线BD的解析式为:y=x+5(x2),设平移后的顶点坐标为(m,m+3),则抛物线解析式为:y=(xm)2+m+3,如图,当抛物线经过点B时,(2m)2+m+3=3,解得m=1或4,当1m4时, 平移后的抛物线与射线只有一个公共点;如图,当抛物线与射线恰好只有一个公共点H时,将抛物线解析式与射线解析式联立可得:(xm)2+m+3=x+5,即x2(2m+1)x+m2m+2=0,要使平移后
28、的抛物线与射线BD只有一个公共点,即要使一元二次方程有两个相等的实数根,解得综上所述,或时,平移后的抛物线与射线BD只有一个公共点【点睛】本题为二次函数、一次函数与几何、一元二次方程方程综合题,一般作为压轴题,主要考查了图形的轴对称、二次函数的平移、函数解析式的求解以及二次函数与一元二次方程的关系,本题关键在于:将三角形的周长最小问题转化为两线段之和最小问题,利用轴对称的性质解题;将二次函数与一次函数的交点个数问题转化为一元二次方程实数根的个数问题23、(1)w10 x2+1300 x30000;(2)最大利润是1元,此时玩具的销售单价应定为65元【分析】(1)利用销售单价每涨1元,就会少售出
29、10件玩具,再结合每件玩具的利润乘以销量=总利润进而求出即可;(2)利用每件玩具的利润乘以销量=总利润得出函数关系式,进而求出最值即可【详解】(1)根据题意得:w=60010(x40)(x30)=10 x2+1300 x30000;(2)w=60010(x40)(x30)=10 x2+1300 x30000=10(x65)2+1a=100,对称轴为x=65,当x=65时,W最大值=1(元)答:商场销售该品牌玩具获得的最大利润是1元,此时玩具的销售单价应定为65元【点睛】本题考查了二次函数的应用,得出w与x的函数关系式是解题的关键24、(1)1;(2)当0t4时,St2+6t,当4t6时,S4t
30、+2,当6t1时,St210t+2,t3时,PBQ的面积最大,最大值为3【分析】(1)求出点Q的运动时间即可判断(2)的三个时间段分别求出PBQ的面积即可利用中结论,求出各个时间段的面积的最大值即可判断【详解】解:(1)四边形ABCD是矩形,ADBC8cm,ABCD6cm,BC+AD14cm,t1421,故答案为1(2)当0t4时,S(6t)2tt2+6t当4t6时,S(6t)84t+2当6t1时,S(t6)(2t8)t210t+2当0t4时,S(6t)2tt2+6t(t3)2+3,10,t3时,PBQ的面积最大,最小值为3当4t6时,S(6t)84t+2,40,t4时,PBQ的面积最大,最大值为8,当6t1时,S(t6)(2t8)t210t+2(t5)21,t1时,PBQ的面积最大,最大值为3,综上所述,t3时,PBQ的面积最大,最大值为3【点睛】本题主要考查了二次函数在几何图形中的应用,涉及了分类讨论的数学思想,灵活的利用二次函数的性质
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合肥幼儿师范高等专科学校《创新理论与方法》2023-2024学年第二学期期末试卷
- 新疆政法学院《新闻算法与编程》2023-2024学年第二学期期末试卷
- 天津渤海职业技术学院《卫星通信系统》2023-2024学年第二学期期末试卷
- 四川国际标榜职业学院《建筑工程造价管理》2023-2024学年第二学期期末试卷
- 内蒙古大学《新能源汽车概论》2023-2024学年第二学期期末试卷
- 2024届河北省石家庄二中实验学校高三下学期仿真模拟历史试卷
- 2024-2025学年山东省聊城市第二中学高一上学期12月月考历史试卷
- 新疆医科大学《高层建筑智慧施工》2023-2024学年第二学期期末试卷
- 广州科技贸易职业学院《建筑CAD》2023-2024学年第二学期期末试卷
- 岭南师范学院《高电压技术实验》2023-2024学年第二学期期末试卷
- 作品集合同范本
- 保安员综合理论考试题库备考500题(含各题型)
- X证书失智老年人照护身体综合照护讲解
- 2025劳动合同法重点法条导读附案例详解
- 2025年内蒙古自治区政府工作报告测试题及参考答案
- 2024年全国中学生生物学联赛试题及答案详解
- 2025年度花卉产业大数据服务平台建设合同2篇
- 2025年度花卉产业大数据平台建设合同3篇
- 小学班会-交通安全伴我行(共25张课件)
- 建筑施工现场安全警示(案例)
- 《生产与运作管理 第4版》课件 第1、2章 概论、需求预测与管理
评论
0/150
提交评论