版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一
2、并交回。一、选择题(每小题3分,共30分)1如图,将RtABC(其中B=35,C=90)绕点A按顺时针方向旋转到AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于( )A55B70C125D145227的立方根是()A3B3C3D33已知xy=1A32B13C24二次函数y=a(x+k)2+k,无论k为何实数,其图象的顶点都在()A直线y=x上B直线y=x上Cx轴上Dy轴上5等腰三角形底角与顶角之间的函数关系是()A正比例函数B一次函数C反比例函数D二次函数6一个正五边形和一个正六边形按如图方式摆放,它们都有一边在直线l上,且有一个公共顶点,则的度数是ABCD7如图,过以为直径
3、的半圆上一点作,交于点,已知,则的长为( )A7B8C9D108如图所示,线段与交于点,下列条件中能判定的是( )A,B,C,D,9如图,一圆弧过方格的格点A、B、C,在方格中建立平面直角坐标系,使点A的坐标为(3,2),则该圆弧所在圆心坐标是()A(0,0)B(2,1)C(2,1)D(0,1)10如图,在平面直角坐标系中,菱形OABC的边OA在x轴上,点,若反比例函数经过点C,则k的值等于( )A10B24C48D50二、填空题(每小题3分,共24分)11如图,在平面直角坐标系中,直线l的函数表达式为,点的坐标为(1,0),以为圆心,为半径画圆,交直线于点,交轴正半轴于点,以为圆心,为半径的
4、画圆,交直线于点,交轴的正半轴于点,以为圆心,为半径画圆,交直线与点,交轴的正半轴于点, 按此做法进行下去,其中弧的长为_12已知中,的面积为1(1)如图,若点分别是边的中点,则四边形的面积是_(2)如图,若图中所有的三角形均相似,其中最小的三角形面积为1,则四边形的面积是_13如图,在中,、分别是边、上的两个动点,且,是的中点,连接,则的最小值为_14如图,在ABC中,CAB65,在同一平面内,将ABC绕点A逆时针旋转到ABC的位置,使得CCAB,则BAB等于_15如图,在平面直角坐标系中,为线段上任一点,作交线段于,当的长最大时,点的坐标为_16如图,正六边形ABCDEF内接于O,O的半径
5、为6,则这个正六边形的边心距OM的长为_17如图,RtABC中,ACB90,BC3,tanA,将RtABC绕点C顺时针旋转90得到DEC,点F是DE上一动点,以点F为圆心,FD为半径作F,当FD_时,F与RtABC的边相切18如图,ABC是等腰直角三角形,BC是斜边,P为ABC内一点,将ABP绕点A逆时针旋转后与ACP重合,若AP=1,那么线段PP的长等于_三、解答题(共66分)19(10分)如图,在矩形中,分别从同时出发,分别沿边移动,当有一个点先到达所在边的另一个端点时,其它各点也随之停止移动己知移动段时间后,若,当为何值时,以为顶点的四边形是平行四边形?20(6分)已知ABC内接于O,过
6、点A作直线EF(1)如图所示,若AB为O的直径,要使EF成为O的切线,还需要添加的一个条件是(至少说出两种): 或者 (2)如图所示,如果AB是不过圆心O的弦,且CAE=B,那么EF是O的切线吗?试证明你的判断21(6分)解方程(1)(2)22(8分)如图,对称轴为直线的抛物线与轴交于两点,与轴交于点连接其中点坐标(1)求抛物线的解析式;(2)直线与抛物线交于点与轴交于点求的面积;(3)在直线下方抛物线上有一点过作轴交直线于点.四边形为平行四边形,求点的坐标23(8分)先化简,再求值:,其中,24(8分)甲、乙两名队员参加射击训练,每人射击10次,成绩分别如下:根据以上信息,整理分析数据如下:
7、平均成绩/环中位数/环众数/环方差甲a771.2乙7b8c(1)a_;b_;c_;(2)填空:(填“甲”或“乙”)从平均数和中位数的角度来比较,成绩较好的是_;从平均数和众数的角度来比较,成绩较好的是_;成绩相对较稳定的是_25(10分)如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角CED=60,在离电线杆6米的B处安置高为1.5米的测角仪AB,在A处测得电线杆上C处的仰角为30,则拉线CE的长为_m(结果保留根号)26(10分)已知二次函数y=x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(1,0),与y轴的交点坐标为(0,3)(1)求出b,c的值,并写
8、出此二次函数的解析式;(2)根据图象,写出函数值y为正数时,自变量x的取值范围 参考答案一、选择题(每小题3分,共30分)1、C【解析】试题分析:B=35,C=90,BAC=90B=9035=55点C、A、B1在同一条直线上,BAB=180BAC=18055=125旋转角等于125故选C2、C【分析】由题意根据如果一个数x的立方等于a,那么x是a的立方根,据此定义进行分析求解即可【详解】解:1的立方等于27,27的立方根等于1故选:C【点睛】本题主要考查求一个数的立方根,解题时先找出所要求的这个数是哪一个数的立方由开立方和立方是互逆运算,用立方的方法求这个数的立方根注意一个数的立方根与原数的性
9、质符号相同3、A【解析】由题干可得y2x,代入x+yy【详解】xyy2x,x+yy故选A【点睛】本题考查了比例的基本性质:两内项之积等于两外项之积即若ab=cd,则4、B【解析】试题分析:根据函数解析式可得:函数的顶点坐标为(-k,k),则顶点在直线y=-x上.考点:二次函数的顶点5、B【解析】根据一次函数的定义,可得答案【详解】设等腰三角形的底角为y,顶角为x,由题意,得x+2y=180,所以,y=x+90,即等腰三角形底角与顶角之间的函数关系是一次函数关系,故选B【点睛】本题考查了实际问题与一次函数,根据题意正确列出函数关系式是解题的关键.6、B【分析】利用正多边形的性质求出AOE,BOF
10、,EOF即可解决问题;【详解】由题意:AOE=108,BOF=120,OEF=72,OFE=60,EOF=1807260=48,AOB=36010848120=84,故选:B【点睛】本题考查正多边形的性质、三角形内角和定理,解题关键在于掌握各性质定义.7、B【分析】根据条件得出,解直角三角形求出BD,根据勾股定理求出CD,代入,即可求出AC的长【详解】AB为直径,CDAB,BC=6,故选:B【点睛】本题考查了圆周角定理,勾股定理,解直角三角形的应用,能够正确解直角三角形是解此题的关键8、C【解析】根据平行线分线段成比例的推论:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那
11、么这条直线平行于三角形的第三边,逐项判断即可得答案.【详解】A.不能判定,故本选项不符合题意;B.无法判断,则不能判定,故本选项不符合题意;C.,故本选项符合题意;D. 不能判定,故本选项不符合题意;故选C.【点睛】本题考查平行线分线段成比例的推论,熟练掌握此推论判定平行是解题的关键.9、C【解析】如图:分别作AC与AB的垂直平分线,相交于点O,则点O即是该圆弧所在圆的圆心点A的坐标为(3,2),点O的坐标为(2,1)故选C10、C【分析】由菱形的性质和锐角三角函数可求点,将点C坐标代入解析式可求k的值【详解】解:如图,过点C作于点E,菱形OABC的边OA在x轴上,点,点C坐标若反比例函数经过
12、点C,故选C【点睛】本题考查了反比例函数性质,反比例函数图象上点的坐标特征,菱形的性质,锐角三角函数,关键是求出点C坐标二、填空题(每小题3分,共24分)11、.【分析】连接,易求得垂直于x轴,可得为圆的周长,再找出圆半径的规律即可解题【详解】连接,是上的点,直线l解析式为,为等腰直角三角形,即轴,同理,垂直于x轴,为圆的周长,以为圆心,为半径画圆,交x轴正半轴于点,以为圆心,为半径画圆,交x轴正半轴于点,以此类推,当时,故答案为【点睛】本题考查了圆周长的计算,考查了从图中找到圆半径规律的能力,本题中准确找到圆半径的规律是解题的关键12、31.5; 26 【分析】(1)证得ADEABC,根据相
13、似三角形的面积比等于相似比的平方及ABC的面积为1,求得ADE的面积,用大三角形的面积减去小三角形的面积,即可得答案;(2) 利用AFHADE得到,设,则,解得,从而得到,然后计算两个三角形的面积差得到四边形DBCE的面积【详解】(1)点D、E分别是边AB、AC的中点,DEBC,ADEABC,点D、E分别是边AB、AC的中点,;(2)如图,根据题意得,设,解得,【点睛】本题考查了相似三角形的判定和性质:有两组角对应相等的两个三角形相似利用相似三角形的面积比等于相似比的平方是解题的关键13、【分析】先在CB上取一点F,使得CF=,再连接PF、AF,然后利用相似三角形的性质和勾股定理求出AF,即可
14、解答【详解】解:如图:在CB上取一点F,使得CF=,再连接PF、AF,DCE=90,DE=4,DP=PE,PC=DE=2,又PCF=BCP,PCFBCP,PA+PB=PA+PF,PA+PFAF,AF= PA+PB .PA+PB的最小值为,故答案为【点睛】本题考查了勾股定理、相似三角形的判定和性质等知识,正确添加常用辅助线、构造相似三角形是解答本题的关键14、50【解析】由平行线的性质可求得C/CA的度数,然后由旋转的性质得到AC=AC/,然后依据三角形的性质可知AC/C的度数,依据三角形的内角和定理可求得CAC/的度数,从而得到BAB/的度数.解:CC/AB,C/CA=CAB=65,由旋转的性
15、质可知:AC=AC/,ACC/=AC/C=65.CAC/=180-65-65=50.BAB/=50.15、(3,)【分析】根据勾股定理求出AB,由DEBD,取BE的中点F,以点F为圆心,BF长为半径作半圆,与x轴相切于点D,连接FD,设AE=x,利用相似三角形求出x,再根据三角形相似求出点E的横纵坐标即可.【详解】A(4,0),B(0,3),OA=4,OB=3,AB=5,DEBD,BDE=90,取BE的中点F,以点F为圆心,BF长为半径作半圆,与x轴相切于点D,连接FD,设AE=x,则BF=EF=DF=,ADF=AOB=90,DFOBADFAOB,解得x=,过点E作EGx轴,EGOB,AEGA
16、BO,,EG=,AG=1,OG=OA-AG=4-1=3,E(3,),故答案为:(3,).【点睛】此题考查圆周角定理,相似三角形的判定及性质,勾股定理,本题借助半圆解题使题中的DEBD所成的角确定为圆周角,更容易理解,是解此题的关键.16、3【解析】连接OB,六边形ABCDEF是O内接正六边形,BOM= =30,OM=OBcosBOM=6 =3,故答案为3.17、或【分析】如图1,当F与RtABC的边AC相切时,切点为H,连接FH,则HFAC,解直角三角形得到AC4,AB5,根据旋转的性质得到DCEACB90,DEAB5,CDAC4,根据相似三角形的性质得到DF;如图2,当F与RtABC的边AC
17、相切时,延长DE交AB于H,推出点H为切点,DH为F的直径,根据相似三角形的性质即可得到结论【详解】如图1,当F与RtABC的边AC相切时,切点为H,连接FH,则HFAC,DFHF,RtABC中,ACB90,BC3,tanA,AC4,AB5,将RtABC绕点C顺时针旋转90得到DEC,DCEACB90,DEAB5,CDAC4,FHAC,CDAC,FHCD,EFHEDC,解得:DF;如图2,当F与RtABC的边AC相切时,延长DE交AB于H,AD,AEHDECAHE90,点H为切点,DH为F的直径,DECDBH,DH,DF,综上所述,当FD或时,F与RtABC的边相切,故答案为:或【点睛】本题考
18、查了切线的判定和性质,相似三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键18、【解析】解:ABP绕点A逆时针旋转后与ACP重合,PAP=BAC=90,AP=AP=1,PP=故答案为.三、解答题(共66分)19、2或【分析】根据平行四边形的性质,得,分两种情况: 当点在点的左侧时,当点在点的右侧时,分别列出关于x的方程,即可求解【详解】在矩形中,ADBC,以为顶点的四边形是平行四边形时,当点在点的左侧时,由,得:,解得: (舍去),;当点在点的右侧时,由,得:,解得:(舍去);综上所述:当=2或时,以为顶点的四边形是平行四边形【点睛】本题主要考查一元二次方程与平行四边形的性质综合,
19、根据等量关系,列出方程,时是解题的关键20、(1)BAE=90,EAC=ABC;(2)EF是O的切线【分析】(1)若EF是切线,则ABEF,添加的条件只要能使ABEF即可;(2)作直径AM,连接CM,理由圆周角定理以及直径所对的圆周角是直角即可【详解】(1)BAE90;CAEB ;(2)EF是O的切线作直径AM,连接CM,则ACM90,MB,MCAMBCAM90,CAEB,CAMCAE90,AEAM,AM为直径,EF是O的切线21、(1)x1=1 x2=(2)x1=2 x2=5【分析】(1)根据直接开平方法即可求解(2)根据因式分解法即可进行求解.【详解】解方程(1)3x+2=5或 3x+2=
20、5x1=1 x2=(2)(x2)(x5)=0 x2=0或x5=0 x1=2 x2=522、(1);(2);(3)【分析】(1)根据对称轴公式及点A 坐标建立方程组求解即可;(2)根据直线表达式求出点E坐标,再联立直线与抛物线的表达式求交点C、D的坐标,利用坐标即可求出的面积;(3)根据点Q在抛物线上设出点Q坐标,再根据P、Q之间的关系表示出点P的坐标,然后利用平行四边形的性质得到BE=PQ,从而建立方程求解即可【详解】解:(1)由题可得,解得,抛物线解析式为;(2)在中,令,得,由,解得或,;(3)在中,令,得,解得或,BE=1,设,则,四边形为平行四边形,整理得:,解得:或,当时,点Q与点B
21、重合,故舍去,【点睛】本题为二次函数综合题,熟练掌握对称轴公式、待定系数法求表达式、交点坐标的求法以及平行四边形的性质是解题的关键23、,【分析】原式括号中变形后,利用同分母分式的减法法则计算,再利用除法法则变形,约分得到最简结果,把x与y的值代入计算即可求出值【详解】原式当,时,原式=3()()【点睛】此题考查了分式的化简求值,以及分母有理化,熟练掌握运算法则是解本题的关键24、(1)7,7.5,4.2;(2)乙,乙;甲【分析】(1)根据平均数、中位数、方差的定义分别计算即可解决问题;(2)由表中数据可知,甲,乙平均成绩相等,乙的中位数,众数均大于甲,说明乙的成绩好于甲,从方差来看,乙的方差大于甲,所以甲的成绩相对较稳定.【详解】解:(l)a(5+26+47+28+9)7(环),b(7+8)7.5(环),c (37)2+(47)2+(67)2+(87)2+(77)2+(87)2+(77)2+(87)2+(107)2+(97)24.2(环2);故答案为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版画廊装饰装修合同范本6篇
- 2024-2025学年高中语文第一单元历史与英雄第1课曹操献刀训练含解析新人教版选修中国小说欣赏
- 2024苹果季节性收购与加工服务合同3篇
- 2025年私人房产买卖合同(含合同变更程序)3篇
- 2025年度企业内部审计与风险控制合同
- 二零二五年度科技研发中心场地租赁与研发成果转化合同2篇
- 2025年度泥工施工项目进度与成本控制合同
- 2024门窗购销及绿色建筑认证服务合同样本3篇
- 随机模式设计
- 2025年新能源设备出口合同范本(含售后服务)3篇
- 替格瑞洛药物作用机制、不良反应机制、与氯吡格雷区别和合理使用
- 河北省大学生调研河北社会调查活动项目申请书
- GB/T 20920-2007电子水平仪
- 如何提高教师的课程领导力
- 企业人员组织结构图
- 日本疾病诊断分组(DPC)定额支付方式课件
- 两段焙烧除砷技术简介 - 文字版(1)(2)课件
- 实习证明模板免费下载【8篇】
- 复旦大学用经济学智慧解读中国课件03用大历史观看中国社会转型
- 案件受理登记表模版
- 最新焊接工艺评定表格
评论
0/150
提交评论