人工智能控制技术在电气传动中的应用研究_第1页
人工智能控制技术在电气传动中的应用研究_第2页
人工智能控制技术在电气传动中的应用研究_第3页
人工智能控制技术在电气传动中的应用研究_第4页
人工智能控制技术在电气传动中的应用研究_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、人工智能控制技术在电气传动中的应用研究人工智能控制技术在电气传动中的应用研究【摘要】阐述了人工智能控制技术的开展概况,介绍了该控制技术的优势,从模糊控制、神经网络和遗传算法等方面讨论了该技术的应用特点及开展前景。【关键词】人工智能;神经网络控制;模糊神经元控制;自适应神经网络论文联盟.Ll.0引言随着现代控制理论的开展,控制器设计的常规技术正逐渐被广泛使用的人工智能软件技术人工神经网络、模糊控制、模糊神经网络、遗传算法等所替代。这些方法的共同特点是,需要不同数量和类型的必须描绘系统和特性的a-priri知识。该系统具有实现简单、性能优异等优势。1人工智能控制技术的优势不同人工智能控制通常采用完

2、全不同的方法,但AI控制器,例如神经、模糊、模糊神经,以及遗传算法都可看成一类非线性函数近似器。这些AI函数近似器比常规的函数估计器具有更多的优势。1它们的设计不需要控制对象的模型在许多场合,很难得到实际控制对象的准确动态方程,实际控制对象的模型在控制器设计时往往有很多不确实性因素。2通过适当调整根据响应时间、下降时间、鲁棒性能等它们能进步性能。例如模糊逻辑控制器的上升时间比最优PID控制器快1.5倍,下降时间快3.5倍,过冲更校人工智能控制器可分为监视、非监视或增强学习型三种。常规的监视学习型神经网络控制器的拓朴构造和学习算法已经定型,这就给这种构造的控制器增加了限制,使得计算时间过长,常规

3、非人工智能学习算法的应用效果不好。采用自适应神经网络和试探法就能克制这些困难,加快学习过程的收敛速度。常规模糊控制器的规那么初值和模糊规那么表是既定a-priri型,这就使得调整困难,当系统得不到apriri既定信息时,整个系统就不能正常工作。而应用自适应AI控制器,如使用自适应模糊神经控制器就能克制这些困难,并且用DSP比拟容易实现这些控制器。2人工智能在电气传动控制中的运用2.1人工智能在直流传动中的运用2.1.1模糊逻辑控制应用主要有两类模糊控制器,adani和Sugen型。到目前为止只有adani模糊控制器用于调速控制系统中。值得注意的是这两种控制器都有规那么库,它是一个ifthen模

4、糊规那么集。但Sugen控制器的典型规那么是假如x是A,并且y是B,那么Z=fx,y。这里A和B是模糊集;Z=fx,y是x,y的函数,通常是输入变量x,y的多项式。当f是常数,就是零阶Sugen模型,因此Sugen是adani控制器的特例。adani控制器由下面四个主要局部组成。1模糊化实现输入变量的测量、量化和模糊化。隶属函数有多种形式。2知识库由数据库和语言控制规那么库组成。开发规那么库的主要方法是:把专家的知识和经历用于应用和控制目的;建模操作器的控制行动;建模过程;使用自适应模糊控制器和人工神经网络推理机制。3推理机制是模糊控制器的核心,能模拟人的决策和推理模糊控制行为。4反模糊化实现

5、量化和反模糊化。有很多反模糊化技术,例如,最大化反模糊化,中间平均技术等。在许多资料中,介绍了多种被模糊化的控制器,但这应与充分模糊控制器完全区分开来,充分模糊控制器才是完全意义上的模糊控制器,被模糊化的控制器易于实现,往往通过改造现有古典控制器得以实现,如被模糊化的PI控制器FPI使用模糊逻辑改变控制器的比例、积分参数,从而使系统的性能得到进步。控制器参数的微小变化可能导致特性的极大进步,被模糊化的控制器参数调整方法如下:Pti=Pti1kPP,Iti=Iti1I。但假设应用充分模糊逻辑控制器,系统响应远远优于FPI和最优古典PI控制器,用于最优化常规控制器的计算时间比模糊化控制器所需的时间

6、多得多。因此,使用最小配置的FPI控制器是可能的选择之一,事实上,这也是用现有驱动装置实现的最简单方法。2.1.2ANNS的应用过去20多年,人工神经网络ANNS在形式识别和信号处理中得到广泛运用。由于ANNS有一致性的非线性函数估计器,因此它也可有效地运用于电气传动控制领域,其优势是不需要被控系统的数学模型,一致性很好,对噪音不敏感。论文联盟.Ll.另外,由于ANNS是并行构造,它很合适多传感器输入运用,如在条件监控、诊断系统中能增强决策的可靠性。假如网络有足够多的隐藏层和隐藏结点以及适宜的鼓励函数,多层ANN只能实现需要的映射,没有直接的技术选择最优隐藏层、结点数和鼓励函数,通常用尝试法解

7、决这个问题,反向传播训练算法是根本的最快下降法,输出结点的误差反应回网络,用于权重调整,搜索最优。输出结点的权重调整迭代不同于隐藏结点的权重调整迭代。通过使用反向传播技术,能得到需要的非线性函数近似值,该算法包括有学习速率参数,对网络的特性有很大影响。反向传播算法是多层前聩ANN最广泛使用的学习技术之一。但有时网络的收敛速度很慢,改良算法的开发是一个重要研究领域。英国Aberdeen大学在这方面获得过令人鼓舞的成绩,他们把常规的反向传播算法和其他AI技术结合起来,使得网络快速收敛,鲁棒性更好。值得注意的是在神经模糊实现中,有时必须使用不同形式的反向传播技术,而不是的标准形式。反向传播技术是在线

8、(Supervised)学习技术,需要充分的输入输出数据对,虽然这种限制也可以用另外的方法加以克制,但该方法是离线的。常规技术就能实现简单的映射,而神经网络能实现更复杂的映射,并且由于它的并行构造这种映射相当快。辩识ANN用于训练第二个ANN神经控制器,即过程控制器,因此,过程输出跟随给定信号,学习过程用的是反向传播算法。该方法分为二步:第一步,ANN被训练用来代表控制对象的响应,这需要用到表示控制对象输出和控制输入关系的微分方程。第二步,把ANN用于控制对象模型的辩识方案中。把ANN与控制对象并行连接,每次迭代时,给ANN提供应定信号作为ANN输入信号。辩识意味着调整权重,使ANN输出信号(

9、即网络输出)和控制对象输出信号(即正输出)的误差最校在辩识阶段,全局误差(即方差之和)以固定时间间隔被计算并与希望的最小值比拟。ANN是神经控制器被用于训练以给出需要的控制对象响应。为了训练这个网络,在每次采样输出时,必须知道误差(E)但仅仅只知道控制对象输出和希望输出(由给定输入决定)的最后误差,辩识方案中的第一个ANN可将最后误差E反向传播,用来训练控制器ANN。在误差最小化过程中,全局误差能被最小化到希望的值。经过训练辩识ANNS和控制ANNS,就可以在实时系统中运用被调整的神经自适应控制方案。2.2人工智能在交流传动中的应用2.2.1模糊逻辑的应用到目前为止,只有两种运用于人工智能技术

10、的工业产品,一是安川矢量变频器,另一个是日立矢量变频器。日立公司最近开发了J300系列IGBT矢量变频器,功率范围是5.555k。它的主要特点是使用无传感器矢量控制算法和强大的自调整功能。无传感器磁通矢量控制方案采样两相定子电流,在初始自整定阶段,电机和负载的惯性以及其他参数例如定子电感,定子和转子电阻、励磁电感等参数被计算。日立公司声称这是世界上第一台使用模糊控制的变频器。它考虑了电机和系统的特性,转矩计算软件在整个频率范围保证了转矩的准确控制。变频器的主要性能指标如下:1Hz时150或更高的启动转矩;在31的速度范围20到60Hz/16到50Hz,电机不用降低功率使用;速度调节比率校J30

11、0系列变频器由于使用了高速微处理器和内置DSP,因此具有很高的响应速度,转矩响应速度大约可到达0.1s。它使用模糊逻辑控制电机电流和加减速斜率,它能根据电机负载和制动需要计算加减速的最优时间,不需要尝试进展调整。模糊逻辑加减速度函数根据模糊规那么设定加减速度比例因子和速度,而模糊规那么那么用当前值与过载限幅或其他限幅值的差值以及电机电流和电压的梯度作为输入变量。梯度和差值构成四个隶属函数,两个隶属函数是三角函数,另二个是半梯形。当用常规的简单电流限幅控制,变频器的斜率是步进型的,经常引起变频器跳闸。特别是在减速时。当用模糊逻辑控制时,斜率非常平滑,变频器假跳闸的现象也消除了。变频器在风机和泵类

12、的运用最能表达模糊逻辑控制的优势。在这些应用中,不需要恒定的加减速时间或准确的位置控制。需要的是与负载条件有关的加减速度的最优化。模糊控制能实现加减速度的最优控制。AI控制器也能进步直接转矩控制系统的性能,这也是值得深化研究的一个宽广领域。英国Aberdeen大学的研究人员开发了基于人工智能的开关矢量选择器以及速度、转矩、磁通观测器等,初步结果令人鼓舞。2.2.2神经网络的应用该系统与常规控制算法梯形控制法相比具有更好的性能,并且大大减少了定位时间,对负载转矩的大范围变化和非初始速度也有满意的控制效果。最后值得指出的是如今发表的大多数有关ANN对各种电机参数估计的论文,一个共同的特点是,它们都是用多层前馈ANNS,用常规反向传播算法,只是学习算法的模型不同

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论