浙江省宁波市鄞州区2023学年中考数学考试模拟冲刺卷含答案解析_第1页
浙江省宁波市鄞州区2023学年中考数学考试模拟冲刺卷含答案解析_第2页
浙江省宁波市鄞州区2023学年中考数学考试模拟冲刺卷含答案解析_第3页
浙江省宁波市鄞州区2023学年中考数学考试模拟冲刺卷含答案解析_第4页
浙江省宁波市鄞州区2023学年中考数学考试模拟冲刺卷含答案解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、浙江省宁波市鄞州区2023年中考数学考试模拟冲刺卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1二次函数y=(x+2)21的图象的对称轴是()A直线x=1B直线x=1C直线x=2D直线x=22如图,二次函数y=ax2+bx+c(a0)的图象经过点(1

2、,2)且与x轴交点的横坐标分别为x1,x2,其中1x10,1x22,下列结论:4a+2b+c0,2a+b0,b2+8a4ac,a1,其中结论正确的有()A1个B2个C3个D4个32014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我省财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为()Ab=a(1+8.9%+9.5%)Bb=a(1+8.9%9.5%)Cb=a(1+8.9%)(1+9.5%)Db=a4若数a使关于x的不等式组有解且所有解都是2x+60的解,且使关于y的分式方程+3=有整数解,则满足条件的所有整数a的个数是()A5B4

3、C3D25如图,在平面直角坐标系中,ABC位于第二象限,点B的坐标是(5,2),先把ABC向右平移4个单位长度得到A1B1C1,再作与A1B1C1关于于x轴对称的A2B2C2,则点B的对应点B2的坐标是()A(3,2)B(2,3)C(1,2)D(1,2)6下列命题是真命题的个数有()菱形的对角线互相垂直;平分弦的直径垂直于弦;若点(5,5)是反比例函数y=图象上的一点,则k=25;方程2x1=3x2的解,可看作直线y=2x1与直线y=3x2交点的横坐标A1个B2个C3个D4个7如图,C,B是线段AD上的两点,若,则AC与CD的关系为( ) ABCD不能确定8我国古代数学名著孙子算经中记载了一道

4、题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有匹,小马有匹,则可列方程组为( )ABCD9下列计算正确的有( )个(2a2)36a6 (x2)(x+3)x26 (x2)2x24 2m3+m3m3 161A0B1C2D310关于x的不等式组的所有整数解是()A0,1B1,0,1C0,1,2D2,0,1,2二、填空题(本大题共6个小题,每小题3分,共18分)11函数y中,自变量x的取值范围是_12若数据2、3、5、3、8的众数是a,则中位数是b,则ab等于_13关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个

5、不相等的实根,则实数k的取值范围是_14不等式组有2个整数解,则m的取值范围是_15已知直线与抛物线交于A,B两点,则_16如图,四边形ABCD内接于O,BD是O的直径,AC与BD相交于点E,AC=BC,DE=3,AD=5,则O的半径为_三、解答题(共8题,共72分)17(8分)自学下面材料后,解答问题。分母中含有未知数的不等式叫分式不等式。如: 0,b0,则0;若a0,b0;若a0,b0,则0;若a0,则0,则 或 ,(1)若0的解集.18(8分)定义:在三角形中,把一边的中点到这条边的高线的距离叫做这条边的中垂距例:如图,在ABC中,D为边BC的中点,AEBC于E,则线段DE的长叫做边BC

6、的中垂距(1)设三角形一边的中垂距为d(d0)若d=0,则这样的三角形一定是 ,推断的数学依据是 .(2)如图,在ABC中,B=15,AB=3,BC=8,AD为边BC的中线,求边BC的中垂距(3)如图,在矩形ABCD中,AB=6,AD=1点E为边CD的中点,连结AE并延长交BC的延长线于点F,连结AC求ACF中边AF的中垂距19(8分)如图所示,AB是O的一条弦,DB切O于点B,过点D作DCOA于点C,DC与AB相交于点E(1)求证:DB=DE;(2)若BDE=70,求AOB的大小20(8分)解方程组 21(8分)先化简,再求值:,其中x=122(10分)问题探究(1)如图,点E、F分别在正方

7、形ABCD的边BC、CD上,EAF=45,则线段BE、EF、FD之间的数量关系为 ;(2)如图,在ADC中,AD=2,CD=4,ADC是一个不固定的角,以AC为边向ADC的另一侧作等边ABC,连接BD,则BD的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由;问题解决(3)如图,在四边形ABCD中,AB=AD,BAD=60,BC=4,若BDCD,垂足为点D,则对角线AC的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由23(12分)如图,在OAB中,OA=OB,C为AB中点,以O为圆心,OC长为半径作圆,AO与O交于点E,OB与O交于点F和D,连接EF,CF,CF与

8、OA交于点G(1)求证:直线AB是O的切线;(2)求证:GOCGEF;(3)若AB=4BD,求sinA的值24解方程:2023学年模拟测试卷参考答案(含详细解析)一、选择题(共10小题,每小题3分,共30分)1、D【答案解析】根据二次函数顶点式的性质解答即可.【题目详解】y=(x+2)21是顶点式,对称轴是:x=-2,故选D.【答案点睛】本题考查二次函数顶点式y=a(x-h)2+k的性质,对称轴为x=h,顶点坐标为(h,k)熟练掌握顶点式的性质是解题关键.2、D【答案解析】由抛物线的开口向下知a0,对称轴为x= 1,a0,2a+b0,当x=2时,y=4a+2b+c2,4ac4ac,a+b+c=

9、2,则2a+2b+2c=4,4a+2b+c0,ab+c0.由,得到2a+2c2,由,得到2ac4,4a2c8,上面两个相加得到6a6,a2或x0,则 或 ;故答案为: 或;(2)由上述规律可知,不等式转化为或,所以,x2或x1.【答案点睛】此题考查一元一次不等式组的应用,解题关键在于掌握掌握运算法则.18、(1)等腰三角形;线段的垂直平分线上的点到两端的距离相等;(2)1;(3). 【答案解析】测试卷分析:(1)根据线段的垂直平分线的性质即可判断(2)如图中,作AEBC于E根据已知得出AE=BE,再求出BD的长,即可求出DE的长(3)如图中,作CHAF于H,先证ADEFCE,得出AE=EF,利

10、用勾股定理求出AE的长,然后证明ADECHE,建立方程求出EH即可解:(1)等腰三角形;线段的垂直平分线上的点到两端的距离相等(2)解:如图中,作AEBC于E在RtABE中,AEB=90,B=15,AB=3 ,AE=BE=3,AD为BC边中线,BC=8,BD=DC=1,DE=BDBE=13=1,边BC的中垂距为1(3)解:如图中,作CHAF于H四边形ABCD是矩形,D=EHC=ECF=90,ADBF,DE=EC,AED=CEF,ADEFCE,AE=EF,在RtADE中,AD=1,DE=3,AE= =5,D=EHC,AED=CEH,ADECHE, = , = ,EH= ,ACF中边AF的中垂距为

11、 19、(1)证明见解析;(2)110【答案解析】分析:(1)欲证明DB=DE,只要证明BED=ABD即可;(2)因为OAB是等腰三角形,属于只要求出OBA即可解决问题;详解:(1)证明:DCOA,OAB+CEA=90,BD为切线,OBBD,OBA+ABD=90,OA=OB,OAB=OBA,CEA=ABD,CEA=BED,BED=ABD,DE=DB(2)DE=DB,BDE=70,BED=ABD=55,BD为切线,OBBD,OBA=35,OA=OB,OBA=180-235=110点睛:本题考查圆周角定理、切线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型20、【答案解析】将

12、3,再联立消未知数即可计算.【题目详解】解:得: +得: 把代入得方程组的解为【答案点睛】本题考查二元一次方程组解法,关键是掌握消元法.21、【答案解析】测试卷分析:测试卷解析:原式=当x=时,原式=.考点:分式的化简求值22、 (1)BE+DF=EF;(2)存在,BD的最大值为6;(3)存在,AC的最大值为2+2【答案解析】(1)作辅助线,首先证明ABEADG,再证明AEFAEG,进而得到EF=FG问题即可解决;(2)将ABD绕着点B顺时针旋转60,得到BCE,连接DE,由旋转可得,CE=AD=2,BD=BE,DBE=60,可得DE=BD,根据DEDC+CE,则当D、C、E三点共线时,DE存

13、在最大值,问题即可解决;(3)以BC为边作等边三角形BCE,过点E作EFBC于点F,连接DE,由旋转的性质得DBE是等边三角形,则DE=AC,根据在等边三角形BCE中,EFBC,可求出BF,EF,以BC为直径作F,则点D在F上,连接DF,可求出DF,则AC=DEDF+EF,代入数值即可解决问题.【题目详解】(1)如图,延长CD至G,使得DG=BE,正方形ABCD中,AB=AD,B=AFG=90,ABEADG,AE=AG,BAE=DAG,EAF=45,BAD=90,BAE+DAF=45,DAG+DAF=45,即GAF=EAF,又AF=AF,AEFAEG,EF=GF=DG+DF=BE+DF,故答案

14、为:BE+DF=EF;(2)存在在等边三角形ABC中,AB=BC,ABC=60,如图,将ABD绕着点B顺时针旋转60,得到BCE,连接DE由旋转可得,CE=AD=2,BD=BE,DBE=60,DBE是等边三角形,DE=BD,在DCE中,DEDC+CE=4+2=6,当D、C、E三点共线时,DE存在最大值,且最大值为6,BD的最大值为6;(3)存在如图,以BC为边作等边三角形BCE,过点E作EFBC于点F,连接DE,AB=BD,ABC=DBE,BC=BE,ABCDBE,DE=AC,在等边三角形BCE中,EFBC,BF=BC=2,EF=BF=2=2,以BC为直径作F,则点D在F上,连接DF,DF=B

15、C=4=2,AC=DEDF+EF=2+2,即AC的最大值为2+2【答案点睛】本题考查了全等三角形的判定与性质以及旋转的性质,解题的关键是熟练的掌握全等三角形的判定与性质以及旋转的性质.23、 (1)见解析;(2)见解析;(3).【答案解析】(1)利用等腰三角形的性质,证明OCAB即可;(2)证明OCEG,推出GOCGEF即可解决问题;(3)根据勾股定理和三角函数解答即可【题目详解】证明:(1)OA=OB,AC=BC,OCAB,O是AB的切线(2)OA=OB,AC=BC,AOC=BOC,OE=OF,OFE=OEF,AOB=OFE+OEF,AOC=OEF,OCEF,GOCGEF,OD=OC,ODEG=OGEF(3)AB=4BD,BC=2BD,设BD=m,BC=2m,OC=OD=r,在RtBOC中,OB2=OC2+BC2,即(r+m)2=r2+(2m)2,解得:r=1.5m,OB=2.5m,sinA=sinB=.【答案点睛】考查圆的综合题,考查切线的判定、等腰三角形的性质、平行线的性质、勾股定理等知识,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论