版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年高考数学模拟测试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知集合Mx|1x2,Nx|x(x+3)0,则MN( )A3,2)B(3,2)C(1,0D(1,0)2在正项等比数列an中,a5-a1=15,a4-a2 =6,则a3=( )A2B4CD83设分别是双曲线的左右焦点若双曲线上存在点,使,且,
2、则双曲线的离心率为( )AB2CD4命题“”的否定为( )ABCD5函数的图象与函数的图象的交点横坐标的和为( )ABCD6在中,为上异于,的任一点,为的中点,若,则等于( )ABCD7函数(其中是自然对数的底数)的大致图像为( )ABCD8已知定义在上的偶函数,当时,设,则( )ABCD9在各项均为正数的等比数列中,若,则( )AB6C4D510易系辞上有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中,如图,白圈为阳数,黑点为阴数,若从阴数和阳数中各取一数,则其差的绝对值为5的概率为ABCD11已知函
3、数,若对任意的总有恒成立,记的最小值为,则最大值为( )A1BCD12将函数的图象向右平移个周期后,所得图象关于轴对称,则的最小正值是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13函数的定义域为_14曲线ye5x2在点(0,3)处的切线方程为_15已知等比数列的各项都是正数,且成等差数列,则=_16已知圆柱的两个底面的圆周在同一个球的球面上,圆柱的高和球半径均为2,则该圆柱的底面半径为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知中,角,的对边分别为,已知向量,且(1)求角的大小;(2)若的面积为,求18(12分)如图,在四棱锥中,底面
4、为矩形,侧面底面,为棱的中点,为棱上任意一点,且不与点、点重合(1)求证:平面平面;(2)是否存在点使得平面与平面所成的角的余弦值为?若存在,求出点的位置;若不存在,请说明理由19(12分)某校为了解校园安全教育系列活动的成效,对全校学生进行一次安全意识测试,根据测试成绩评定“合格”、“不合格”两个等级,同时对相应等级进行量化:“合格”记分,“不合格”记分.现随机抽取部分学生的成绩,统计结果及对应的频率分布直方图如下所示:等级不合格合格得分频数624()若测试的同学中,分数段内女生的人数分别为,完成列联表,并判断:是否有以上的把握认为性别与安全意识有关? 是否合格 性别 不合格合格总计男生女生
5、总计()用分层抽样的方法,从评定等级为“合格”和“不合格”的学生中,共选取人进行座谈,现再从这人中任选人,记所选人的量化总分为,求的分布列及数学期望;()某评估机构以指标(,其中表示的方差)来评估该校安全教育活动的成效,若,则认定教育活动是有效的;否则认定教育活动无效,应调整安全教育方案.在()的条件下,判断该校是否应调整安全教育方案?附表及公式:,其中.20(12分)已知函数与的图象关于直线对称. (为自然对数的底数)(1)若的图象在点处的切线经过点,求的值;(2)若不等式恒成立,求正整数的最小值.21(12分)在平面直角坐标系xoy中,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系。已知
6、曲线C的极坐标方程为,过点的直线l的参数方程为(为参数),直线l与曲线C交于M、N两点。(1)写出直线l的普通方程和曲线C的直角坐标方程:(2)若成等比数列,求a的值。22(10分)已知函数.(1)若是函数的极值点,求的单调区间;(2)当时,证明:2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】先化简Nx|x(x+3)0=x|-3x0,再根据Mx|1x2,求两集合的交集.【题目详解】因为Nx|x(x+3)0=x|-3x0,又因为Mx|1x2,所以MNx|1x0.故选:C【答案点睛
7、】本题主要考查集合的基本运算,还考查了运算求解的能力,属于基础题.2、B【答案解析】根据题意得到,解得答案.【题目详解】,解得或(舍去).故.故选:.【答案点睛】本题考查了等比数列的计算,意在考查学生的计算能力.3、A【答案解析】由及双曲线定义得和(用表示),然后由余弦定理得出的齐次等式后可得离心率【题目详解】由题意,由双曲线定义得,从而得,在中,由余弦定理得,化简得故选:A【答案点睛】本题考查求双曲线的离心率,解题关键是应用双曲线定义用表示出到两焦点的距离,再由余弦定理得出的齐次式4、C【答案解析】套用命题的否定形式即可.【题目详解】命题“”的否定为“”,所以命题“”的否定为“”.故选:C【
8、答案点睛】本题考查全称命题的否定,属于基础题.5、B【答案解析】根据两个函数相等,求出所有交点的横坐标,然后求和即可.【题目详解】令,有,所以或.又,所以或或或,所以函数的图象与函数的图象交点的横坐标的和,故选B.【答案点睛】本题主要考查三角函数的图象及给值求角,侧重考查数学建模和数学运算的核心素养.6、A【答案解析】根据题意,用表示出与,求出的值即可.【题目详解】解:根据题意,设,则,又,故选:A.【答案点睛】本题主要考查了平面向量基本定理的应用,关键是要找到一组合适的基底表示向量,是基础题.7、D【答案解析】 由题意得,函数点定义域为且,所以定义域关于原点对称, 且,所以函数为奇函数,图象
9、关于原点对称, 故选D.8、B【答案解析】根据偶函数性质,可判断关系;由时,求得导函数,并构造函数,由进而判断函数在时的单调性,即可比较大小.【题目详解】为定义在上的偶函数,所以所以;当时,则,令则,当时,则在时单调递增,因为,所以,即,则在时单调递增,而,所以,综上可知,即,故选:B.【答案点睛】本题考查了偶函数的性质应用,由导函数性质判断函数单调性的应用,根据单调性比较大小,属于中档题.9、D【答案解析】由对数运算法则和等比数列的性质计算【题目详解】由题意故选:D【答案点睛】本题考查等比数列的性质,考查对数的运算法则掌握等比数列的性质是解题关键10、A【答案解析】阳数:,阴数:,然后分析阴
10、数和阳数差的绝对值为5的情况数,最后计算相应概率.【题目详解】因为阳数:,阴数:,所以从阴数和阳数中各取一数差的绝对值有:个,满足差的绝对值为5的有:共个,则.故选:A.【答案点睛】本题考查实际背景下古典概型的计算,难度一般.古典概型的概率计算公式:.11、C【答案解析】对任意的总有恒成立,因为,对恒成立,可得,令,可得,结合已知,即可求得答案.【题目详解】对任意的总有恒成立,对恒成立,令,可得令,得当,当,故令,得 当时,当,当时,故选:C.【答案点睛】本题主要考查了根据不等式恒成立求最值问题,解题关键是掌握不等式恒成立的解法和导数求函数单调性的解法,考查了分析能力和计算能力,属于难题.12
11、、D【答案解析】由函数的图象平移变换公式求出变换后的函数解析式,再利用诱导公式得到关于的方程,对赋值即可求解.【题目详解】由题意知,函数的最小正周期为,即,由函数的图象平移变换公式可得,将函数的图象向右平移个周期后的解析式为,因为函数的图象关于轴对称,所以,即,所以当时,有最小正值为.故选:D【答案点睛】本题考查函数的图象平移变换公式和三角函数诱导公式及正余弦函数的性质;熟练掌握诱导公式和正余弦函数的性质是求解本题的关键;属于中档题、常考题型.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】根据函数成立的条件列不等式组,求解即可得定义域.【题目详解】解:要使函数有意义,则 ,
12、即.则定义域为: .故答案为: 【答案点睛】本题主要考查定义域的求解,要熟练掌握张建函数成立的条件.14、.【答案解析】先利用导数求切线的斜率,再写出切线方程.【题目详解】因为y5e5x,所以切线的斜率k5e05,所以切线方程是:y35(x0),即y5x3.故答案为y5x3.【答案点睛】(1)本题主要考查导数的几何意义和函数的求导,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 函数在点处的导数是曲线在处的切线的斜率,相应的切线方程是15、【答案解析】根据等差中项性质,结合等比数列通项公式即可求得公比;代入表达式,结合对数式的化简即可求解.【题目详解】等比数列的各项都是正数,且成等差数
13、列,则,由等比数列通项公式可知,所以,解得或(舍),所以由对数式运算性质可得,故答案为:.【答案点睛】本题考查了等差数列通项公式的简单应用,等比数列通项公式的用法,对数式的化简运算,属于中档题.16、【答案解析】由圆柱外接球的性质,即可求得结果.【题目详解】解:由于圆柱的高和球半径均为2,,则球心到圆柱底面的距离为1,设圆柱底面半径为,由已知有,即圆柱的底面半径为.故答案为:.【答案点睛】本题考查由圆柱的外接球的性质求圆柱底面半径,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【答案解析】试题分析:(1)利用已知及平面向量数量积运算可得,利用正弦
14、定理可得,结合,可求,从而可求的值;(2)由三角形的面积可解得,利用余弦定理可得,故可得. 试题解析:(1),即 ,又,又,(2),又,即,故18、(1)证明见解析 (2)存在,为中点【答案解析】(1)证明面,即证明平面平面;(2)以为坐标原点,为轴正方向,为轴正方向,为轴正方向,建立空间直角坐标系利用向量方法得,解得,所以为中点【题目详解】(1)由于为中点,又,故,所以为直角三角形且,即又因为面,面面,面面,故面,又面,所以面面(2)由(1)知面,又四边形为矩形,则两两垂直以为坐标原点,为轴正方向,为轴正方向,为轴正方向,建立空间直角坐标系则,设,则,设平面的法向量为,则有,令,则,则平面的
15、一个法向量为,同理可得平面的一个法向量为,设平面与平面所成角为,则由题意可得,解得,所以点为中点【答案点睛】本题主要考查空间几何位置关系的证明,考查空间二面角的应用,意在考查学生对这些知识的理解掌握水平.19、()详见解析;()详见解析;()不需要调整安全教育方案.【答案解析】(I)根据题目所给数据填写好列联表,计算出的值,由此判断出在犯错误概率不超过的前提下,不能认为性别与安全测试是否合格有关.(II)利用超几何分布的计算公式,计算出的分布列并求得数学期望.(III)由(II)中数据,计算出,进而求得的值,从而得出该校的安全教育活动是有效的,不需要调整安全教育方案.【题目详解】解:()由频率
16、分布直方图可知,得分在的频率为,故抽取的学生答卷总数为,.性别与合格情况的列联表为: 是否合格 性别 不合格合格小计男生女生小计即在犯错误概率不超过的前提下,不能认为性别与安全测试是否合格有关.()“不合格”和“合格”的人数比例为,因此抽取的人中“不合格”有人,“合格”有人,所以可能的取值为, .的分布列为:20151050所以. ()由()知: .故我们认为该校的安全教育活动是有效的,不需要调整安全教育方案.【答案点睛】本小题主要考查列联表独立性检验,考查超几何分布的分布列、数学期望和方差的计算,所以中档题.20、(1)e;(2)2.【答案解析】(1)根据反函数的性质,得出,再利用导数的几何
17、意义,求出曲线在点处的切线为,构造函数,利用导数求出单调性,即可得出的值;(2)设,求导,求出的单调性,从而得出最大值为,结合恒成立的性质,得出正整数的最小值.【题目详解】(1)根据题意,与的图象关于直线对称,所以函数的图象与互为反函数,则,,设点,又,当时,曲线在点处的切线为,即,代入点,得,即,构造函数, 当时,当时,且,当时,单调递增,而, 故存在唯一的实数根.(2)由于不等式恒成立,可设,所以,令,得. 所以当时,;当时,因此函数在是增函数,在是减函数. 故函数的最大值为 .令, 因为, ,又因为在是减函数.所以当时,.所以正整数的最小值为2.【答案点睛】本题考查导数的几何意义和利用导
18、数解决恒成立问题,涉及到单调性、构造函数法等,考查函数思想和计算能力.21、(1)l的普通方程;C的直角坐标方程;(2).【答案解析】(1)利用极坐标与直角坐标的互化公式即可把曲线的极坐标方程化为直角坐标方程,利用消去参数即可得到直线的直角坐标方程;(2)将直线的参数方程,代入曲线的方程,利用参数的几何意义即可得出,从而建立关于的方程,求解即可【题目详解】(1)由直线l的参数方程消去参数t得,,即为l的普通方程由,两边乘以得 为C的直角坐标方程.(2)将代入抛物线得由已知成等比数列,即,整理得 (舍去)或.【答案点睛】熟练掌握极坐标与直角坐标的互化公式、方程思想、直线的参数方程中的参数的几何意义是解题的关键22、(1)递减区间为(-1,0),递增区间为(2)见解析【答案解析】(1)根据函数解析式,先求得导函数,由是函数的极值点可求得参数.求得函数定义域,并根据导函数的符号即可判断单调区间.(2)当时,.代入函数解析式放缩为,代入证明的不等式可化为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024金融科技创新与研发合作合同
- 2024砂浆销售合同范本正规范本
- 2025年度企业知识产权保护合作协议范本3篇
- 2024首期购房款支付及配套设施安装合同3篇
- 2024购物广场饰品知识产权保护合同
- 2024门诊部心理健康咨询师劳动合同与心理咨询服务合同2篇
- 2024酒店弱电施工合同
- 多彩的植物世界-园林植物识别知到智慧树章节测试课后答案2024年秋黑龙江生态工程职业学院
- 2024韩星夫妻解除婚姻关系标准协议样本一
- 智能家居二手房买卖合同样本
- GB/T 23445-2009聚合物水泥防水涂料
- 漆画漆艺 第三章
- CB/T 615-1995船底吸入格栅
- (完整版)100道凑十法练习题
- 光伏逆变器一课件
- 2023年上海师范大学辅导员招聘考试笔试题库及答案解析
- (完整版)英语高频词汇800词
- 严重精神障碍患者发病报告卡
- 《基础马来语》课程标准(高职)
- 2021年国标热镀锌钢管规格、尺寸理论重量表
- 乌鲁木齐基准地价修正体系
评论
0/150
提交评论