新疆昌吉玛纳斯县第一中学2021-2022学年高二数学第二学期期末学业水平测试试题含解析_第1页
新疆昌吉玛纳斯县第一中学2021-2022学年高二数学第二学期期末学业水平测试试题含解析_第2页
新疆昌吉玛纳斯县第一中学2021-2022学年高二数学第二学期期末学业水平测试试题含解析_第3页
新疆昌吉玛纳斯县第一中学2021-2022学年高二数学第二学期期末学业水平测试试题含解析_第4页
新疆昌吉玛纳斯县第一中学2021-2022学年高二数学第二学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高二下数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1一个盒子里有7个红球,3个白球,从盒子里先取一个小球,然后不放回的再从盒子里取出一个小球,若已知第1个是红球的前提下,则第2个是白球的概率是( )ABCD2已知有下列各式

2、:,成立,观察上面各式,按此规律若,则正数( )ABCD3的展开式中,的系数为( )ABC30D4端午节吃粽子是我国的传统习俗,设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同,从中任意选取3个,则三种粽子各取到1个的概率是( )ABCD5复数是虚数单位的虚部是AB1CDi6我国古代数学名著九章算术中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径.“开立圆术”相当于给出了已知球的体积,求其直径的一个近似公式,人们还用过一些类似的近似公式,根据判断,下列近似公式中最精确的一个是( )ABCD7设是不同的直线,是不同的平面,有以下四个命题

3、:若,则 若,则若,则 若,则 . 其中真命题的序号为( )ABCD8某单位为了了解用电量 (度)与气温 ()之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:气温()1013181用电量(度)38342464由表中数据得回归直线方程中的,预测当气温为时,用电量度数约为( )A64B65C68D709设集合,若,则( )ABCD10已知圆,定点,点为圆上的动点,点在上,点在线段上,且满足,则点的轨迹方程是( )ABCD11若,如果与为共线向量,则( )A,B,C,D,12某几何体的三视图如图所示,当时,这个几何体的体积为()A1BCD二、填空题:本题共4小题,每小题5分,共20分

4、。13设函数,. 若, 且的最小值为-1,则实数的值为_14若随机变量,则,.已知随机变量,则_15如图,在边长为1的正方形中随机撒一粒黄豆,则它落在阴影部分的概率为_.16正方体中,、分别是、的中点,则直线与平面所成角的正弦值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:性别是否需要志愿者男女需要4030不需要160270(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)请根据上面的数据分析该地区的老年人需要志愿者提供帮助与性别有关吗18(12

5、分)已知函数.(1)已知函数只有一个零点,求的取值范围;(2)若存在,使得成立,求实数的取值范围19(12分)如图所示是竖直平面内的一个“通道游戏”,图中竖直线段和斜线都表示通道,并且在交点处相遇若有一条竖直线段的为第一层,第二条竖直线段的为第二层,以此类推,现有一颗小球从第一层的通道向下运动,在通道的交叉处,小球可以落入左右两个通道中的任意一个,记小球落入第层的第个竖直通道(从左向右计)的不同路径数为(1)求,的值;(2)猜想的表达式(不必证明),并求不等式的解集20(12分)已知命题p:函数的定义域为R;命题q:双曲线的离心率,若“”是真命题,“”是假命题,求实数a的取值范围21(12分)

6、某电视台举办闯关活动,甲、乙两人分别独立参加该活动,每次闯关,甲成功的概率为,乙成功的概率为.(1)甲参加了次闯关,求至少有次闯关成功的概率;(2)若甲、乙两人各进行次闯关,记两人闯关成功的总次数为,求的分布列及数学期望.22(10分)梯形中,矩形所在平面与平面垂直,且,.(1)求证:平面平面;(2)若P为线段上一点,且异面直线与所成角为45,求平面与平面所成锐角的余弦值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】分析:设已知第一次取出的是红球为事件,第二次是白球为事件,先求出的概率,然后利用条件概率公式进行计算

7、即可详解:设已知第一次取出的是红球为事件,第二次是白球为事件则由题意知,所以已知第一次取出的是白球,则第二次也取到白球的概率为 故选:B 点睛:本题主要考查条件概率的求法,熟练掌握条件概率的概率公式是关键2、C【解析】观察上面各式,类比推理即可得到结果.【详解】由题,观察上面各式可得,则,所以,故选:C【点睛】本题考查类比推理,考查理解分析能力.3、B【解析】将二项式表示为,利用二项展开式通项,可得出,再利用完全平方公式计算出展开式中的系数,乘以可得出结果.【详解】,其展开式通项为,由题意可得,此时所求项为,因此,的展开式中,的系数为,故选B.【点睛】本题考查三项展开式中指定项的系数,解题时要

8、将三项视为两项相加,借助二项展开式通项求解,考查运算求解能力,属于中等题.4、C【解析】试题分析:由题可先算出10个元素中取出3个的所有基本事件为;种情况;而三种粽子各取到1个有种情况,则可由古典概率得;考点:古典概率的算法5、B【解析】利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,从而可得答案【详解】,复数的虚部是1故选B【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的摸这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必

9、要的失分.6、B【解析】利用球体的体积公式得,得出的表达式,再将的近似值代入可得出的最精确的表达式.【详解】由球体的体积公式得,与最为接近,故选C.【点睛】本题考查球体的体积公式,解题的关键在于理解题中定义,考查分析问题和理解问题的能力,属于中等题7、D【解析】由题意结合立体几何的结论逐一考查所给的说法是否正确即可.【详解】逐一考查所给的命题:如图所示,正方体中,取平面为平面,平面,直线为,满足,但是不满足,题中所给的命题错误;由面面垂直的性质定理可知若,则,题中所给的命题正确;如图所示,正方体中,取平面为,直线为,直线为,满足,但是,不满足,题中所给的命题错误;由面面垂直的性质定理可知若,则

10、,题中所给的命题正确.综上可得:真命题的序号为.本题选择D选项.【点睛】本题考查了空间几何体的线面位置关系判定与证明:(1)对于异面直线的判定要熟记异面直线的概念:把既不平行也不相交的两条直线称为异面直线;(2)对于线面位置关系的判定中,熟记线面平行与垂直、面面平行与垂直的定理是关键.8、C【解析】先求解出气温和用电量的平均数,然后将样本点中心代入回归直线方程,求解出的值,即可预测气温为时的用电量.【详解】因为,所以样本点中心,所以,所以,所以回归直线方程为:,当时,.故选:C.【点睛】本题考查回归直线方程的求解以及利用回归直线方程估计数值,难度较易.注意回归直线方程过样本点的中心.9、B【解

11、析】分析:先根据得到=1即得a=2,再根据求出b的值,再求则.详解:因为,所以=1,所以a=2.又因为,所以b=1,所以Q=2,1,所以.故答案为:B.点睛:(1)本题主要考查集合的交集补集运算,意在考查学生对这些知识的掌握水平和分析推理能力.(2)解答集合中的参数问题,要注意检验,一是检验是否满足集合元素的互异性,二是检验是否满足每一个条件.10、A【解析】试题分析:由,可知,直线为线段的中垂线,所以有,所以有,所以点的轨迹是以点为焦点的椭圆,且,即,所以椭圆方程为,故选A考点:1向量运算的几何意义;2椭圆的定义与标准方程【名师点睛】本题主要考查向量运算的几何意义、椭圆的定义与椭圆方程的求法

12、,属中档题求椭圆标准方程常用方法有:1定义法,即根据题意得到所求点的轨迹是椭圆,并求出的值;2选定系数法:根据题意先判断焦点在哪个坐标轴上,设出其标准方程,根据已知条件建立关系的方程组,解之即可11、B【解析】利用向量共线的充要条件即可求出【详解】解:与为共线向量,存在实数使得,解得故选:【点睛】本题考查空间向量共线定理的应用,属于基础题.12、B【解析】三视图复原几何体是长方体的一个角,设出棱长,利用勾股定理,基本不等式,求出最大值【详解】解:如图所示,可知设,则,消去得,所以,当且仅当时等号成立,此时,所以故选:B【点睛】本题考查三视图求体积,考查基本不等式求最值,是中档题二、填空题:本题

13、共4小题,每小题5分,共20分。13、2【解析】分析:先表示函数,再利用导数求函数最小值,最后根据的最小值为-1得实数的值.详解:因为,设,则所以因为,所以当时,;当时,;即当时,.点睛:两函数关系问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式或方程,从而求出参数的取值范围或值.14、0.8185【解析】分析:根据正态曲线的对称性和特殊区间上的概率可求出和,然后求出这两个概率的和即可详解:由题意得,点睛:本题考查正态分布,考查正态曲线的对称性和三个特殊区间上的概率,解题的关键是将所求概率合理地转化为特殊区间上的概率求解15、【解析】利用定积分求得阴影部分的面

14、积,然后利用几何概型的概率计算公式,即可求解【详解】由题意,结合定积分可得阴影部分的面积为,由几何概型的计算公式可得,黄豆在阴影部分的概率为【点睛】本题主要考查了定积分的几何意义求解阴影部分的面积,以及几何概型及其概率的计算问题,其中解答中利用定积分的几何意义求得阴影部分的面积是解答的关键,着重考查了推理与计算能力,属于基础题16、.【解析】设正方体的棱长为,以点为坐标原点,、所在直线分别为轴、轴、轴建立空间直角坐标系,计算出平面的一个法向量,利用空间向量法计算出直线与平面所成角的正弦值.【详解】设正方体的棱长为,以点为坐标原点,、所在直线分别为轴、轴、轴建立如下图所示空间直角坐标系.则点、,

15、设平面的一个法向量为,则,.由,即,得,令,则,.可知平面的一个法向量为,又.,因此,直线与平面所成角的正弦值为,故答案为.【点睛】本题考查直线与平面所成角的正弦的计算,解题的关键就是建立空间直角坐标系,将问题利用空间向量法进行求解,考查运算求解能力,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)有99%的把握认为该地区的老年人是否需要帮助与性别有关.【解析】试题分析:(1)由列联表可知调查的500位老年人中有位需要志愿者提供帮助,两个数据求比值得到该地区老年人中需要帮助的老年人的比例的估算值;(2)根据列联表所给的数据,代入随机变量的观测值公式

16、,得到观测值的结果,把观测值的结果与临界值进行比较,看出有多大把握说该地区的老年人是否需要帮助与性别有关.试题解析:解:(1)调查的500位老年人中有70位需要志愿者提供帮助,因此该地区老年人中,需要帮助的老年人的比例的估算值为(2)根据表中数据计算得:。由于9.9676.635,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关。考点:独立性检验.18、(1)或;(2)【解析】(1)先求导,再对a分类讨论,研究函数的图像,求得a的取值范围.(2)先转化得到,再构造函数,再利用导数求函数g(x)的最大值得a的取值范围.【详解】(1),定义域为 若则,在上为增函数因为,有一个零点,所以符

17、合题意; 若 令,得,此时单调递增,单调递减的极大值为,因为只有一个零点,所以,即,所以综上所述或.(2)因为,使得,所以令,即,因为设,所以在单调递减,又故函数在单调递增,单调递减,的最大值为,故答案为:.【点睛】(1)本题主要考查利用导数求函数的单调性和最值,意在考查学生对这些知识的掌握水平和分析推理能力.(2)第2问的解题关键有两点,其一是分离参数转化为,其二是构造函数,再利用导数求函数g(x)的最大值得a的取值范围.19、(1),;(2),不等式的解集为.【解析】(1)根据题意得出,且可求出,以及;(2)根据可得出,然后得出的表达式,从而得出不等式的解集.【详解】(1)由题意可得,且.

18、,;(2)由可推得,不等式即为,.解不等式,可得的可能取值有、.所以,不等式的解集为.【点睛】本题考查杨辉三角性质的应用,考查组合数的应用以及组合不等式的求解,解题的关键就是要找出递推公式,逐项计算即可,考查运算求解能力,属于中等题.20、或【解析】分别求出p,q真时的a的范围,再根据p真q假或p假q真得到a的范围取并集即可【详解】解:若命题p真,则在上恒成立则有,解得;若命题q真,则,解得由“”是真命题,“”是假命题,知p与q必为一真一假,若p真q假,则,得;若p假q真,则,得综合得a的范围为或【点睛】本题考查了复合命题的判断,考查对数函数、双曲线的性质,属于基础题21、(1);(2).【解析】(1)这是一个独立重复试验,利用独立重复试验的公式即可计算甲参加了次闯关,求至少有次闯关成功的概率;(2)由题意的取值为,.求出相应概率即可得到的分布列及数学期望.【详解】(1)甲参加了次闯关,记“至少有次闯关成功”为事件,则.(2)由题意的取值为,. , , , , ,故的分布列为所以 .【点睛】本题考查了相互独立与对立事件的概率计算公式、独立重复试验的性质,离散型随机变量的分布列及其数学期望,考查了推理能力与计算能力,属于中档题22

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论