2023届高三数学一轮大题专练16-导数(数列不等式的证明2)_第1页
2023届高三数学一轮大题专练16-导数(数列不等式的证明2)_第2页
2023届高三数学一轮大题专练16-导数(数列不等式的证明2)_第3页
2023届高三数学一轮大题专练16-导数(数列不等式的证明2)_第4页
2023届高三数学一轮大题专练16-导数(数列不等式的证明2)_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023届高三数学一轮大题专练16导数(数列不等式的证明2)1已知函数(1)若在上恒成立,求实数的取值范围(2)证明:,解:(1),等价于,令,则,令,解得:,令,解得:,故在递增,在递减,故(e),故实数的取值范围是,(2)证明:由(1)可知在上恒成立,则,即,当且仅当时“”成立,取,2,3,则,将上述不等式相乘可得,即,故2已知函数(1)若,求实数的值;(2)求证:解:(1),则当时,在上单调递增,(1),当时,(1),不符合题意,舍去;当时,由得,由得,在上单调递增,在上单调递减,(1),当时,(1),不符合题意,舍去;当时,由得,;由得,在上单调递增,在上单调递减,又(1),成立;当时

2、,由得,由得,在上单调递增,在上单调递减,(1),当时,(1),不符合题意,舍去;综上得,(2)证明:由(1)知,当时,在上成立,即,令,则,即,3设(1)当时,求证:;(2)证明:对一切正整数,都有证明:(1),单调递增,时,在递增,;(2)时,令,2,3,故原命题成立4已知函数(1)证明:时,;(2)证明:时,证明:(1)设,则,故函数为减函数,可得,即,故为减函数,所以(2)由(1)知:时,可得(1),所以,所以,因为时,所以,所以,所以5已知函数(1)求函数在,上的最大值;(2)当时,求证:解:(1),当时,在,上单调递增,则;当时,令,解得,易知当时,单增,当时,单减,当,即时,在,

3、上单减,则;当,即时,在,单增,则;当,即时,在单增,在单减,则;(2)证明:当时,不等式显然成立;当时,有,设,即6已知函数(1)当时,求的单调区间;(2)若恒成立,求的值;求证:对任意正整数,都有(其中为自然对数的底数)解:(1)的定义域为,(1分)令得或时,;时,;时,所以,的单调增区间是,单调减区间是,(3分)(2)解:由,得对恒成立记其中(1),当时,恒成立,在上单调递减,时,(1),不符合题意;(4分)当时,令,得,时,时,所以在上单调递增,在上单调递减,(a)(6分)记(a),(a)令(a)得,时(a);时,(a),(a)在上单调递减,在上单调递增(a)(1),即(a),(a)又(1),故(8分)证明:由可知:,(当且仅当时等号成立)令,则,7已知,其中,且(e)(1)求与的关系;(2)若在其定义域内为单调函数,求的取值范围;(3)证明:;解:(1)由题意,所以;(2)由(1)知:,令要使在为单调函数,只需在满足:或恒成立时,在单调递减,适合题意当时,图象为开口向上抛物线,对称轴为只需,即时,在单调递增,适合题意当时,图象为开口向下的抛物线,其对称轴为,只需,即时,恒成立,在单调递减,适合题意综上可得,或 (3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论