版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、8/8第18章 勾股定理复习一知识归纳勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为,斜边为,那么勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变根据同一种图形的面
2、积不同的表示方法,列出等式,推导出勾股定理常见方法如下:方法一:,化简可证方法二:四个直角三角形的面积及小正方形面积的和等于大正方形的面积四个直角三角形的面积及小正方形面积的和为大正方形面积为所以方法三:,化简得证.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形.勾股定理的应用已知直角三角形的任意两边长,求第三边在中,则,知道直角三角形一边,可得另外两边之间的数量关系可运用勾股定理解决一些实际问题.勾股定理的逆定理如果三角形三边长,满足,那么这个
3、三角形是直角三角形,其中为斜边勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和及较长边的平方作比较,若它们相等时,以,为三边的三角形是直角三角形;若,时,以,为三边的三角形是钝角三角形;若,时,以,为三边的三角形是锐角三角形;定理中,及只是一种表现形式,不可认为是唯一的,如若三角形三边长,满足,那么以,为三边的三角形是直角三角形,但是为斜边勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形.勾股数能够构成直角三角形的三边长的三个正整数称为勾股数,即
4、中,为正整数时,称,为一组勾股数记住常见的勾股数可以提高解题速度,如;等用含字母的代数式表示组勾股数:(为正整数);(为正整数)(,为正整数)勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和及最长边的平方进行比较,
5、切不可不加思考的用两边的平方和及第三边的平方比较而得到错误的结论.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决常见图形:题型一:直接考查勾股定理例.在中,已知,求的长已知,求的长分析:直接应用勾股定理解:题型二:应用勾股定理建立方程例.在中,于,已知直角三角形的两直角边长之比为,斜边长为,则这个三角形的面积为已知直角三角形的周长为,斜边长为,则这个三角形的面积为分析:在解直角三角形时,要想到勾股定理,及两直角边的乘积等于斜边及斜边上高的乘积有时可根据勾股定理列方程求解解:,设两直角边的长分别为,设两直角边分别为,则,可得例.如图中,求的长分析:此题将勾股定理及全等三角形的知识结合起来解:作于,在中在中,例4.如图,,分别以各边为直径作半圆,求阴影部分面积答案:6题型三:实际问题中应用勾股定理例5.如图有两棵树,一棵高,另一棵高,两树相距,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了分析:根据题意建立数学模型,如图,过点作,垂足为,则,在中,由勾股定理得答案:题型四:应用勾股定理逆定理,判定一个三角形是否是直角三角形例6.已知三角形的三边长为,判定是否为,解:,是直角三角形且,不是直角三角形例7.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 开题报告:疫情常态下ISO+AI驱动的线上教学质量保障与提升体系研究
- 临时施工用电专项方案2
- 开题报告:信息科技课程大概念谱系构建原理、方法及教学研究
- 开题报告:新时代民办教育发展战略和治理创新研究
- 《膜分离技术》课件
- 《CAD基本练习》课件
- 2024年度企业业务外包个人承包合同
- 2024年区域独家销售代表协议版
- 《财产条款培训》课件
- 2024年度互联网金融平台运营与监管合同
- 财务指标税负监控表(会计财务管理报表模板)
- 贵州省贵阳市2023年中考数学试题(word版-含解析)
- GB/T 617-2006化学试剂熔点范围测定通用方法
- GB/T 36422-2018化学纤维微观形貌及直径的测定扫描电镜法
- GB/T 16311-1996道路交通标线质量要求和检测方法
- 人教版九年级物理全一册18.1《电能 电功》课件(共48张PPT)
- 人口经济理论中关于人口与经济增长的研究
- 融合终端智芯操作系统使用说明书
- 床边综合能力
- 小学二年级综合实践活动.生活中的标志-(17张)ppt
- 知识与智慧课件
评论
0/150
提交评论