浙江省金华义乌市2023学年中考数学四模试卷含答案解析2_第1页
浙江省金华义乌市2023学年中考数学四模试卷含答案解析2_第2页
浙江省金华义乌市2023学年中考数学四模试卷含答案解析2_第3页
浙江省金华义乌市2023学年中考数学四模试卷含答案解析2_第4页
浙江省金华义乌市2023学年中考数学四模试卷含答案解析2_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、浙江省金华义乌市2023年中考数学四模试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在测试卷卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在测试卷卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本

2、试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)12017上半年,四川货物贸易进出口总值为2 098.7亿元,较去年同期增长59.5%,远高于同期全国19.6%的整体进出口增幅在“一带一路”倡议下,四川同期对以色列、埃及、罗马尼亚、伊拉克进出口均实现数倍增长将2098.7亿元用科学记数法表示是()A2.098 7103B2.098 71010C2.098 71011D2.098 710122如图,菱形中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD的周长为28,则OE的长等于( )A3.5B4C7D143如图,直线a、b被c所截,若ab,1=45,2

3、=65,则3的度数为( )A110B115C120D1304已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是( )ABCD5如图,矩形ABCD的顶点A、C分别在直线a、b上,且ab,1=60,则2的度数为( )A30B45C60D756如图,在正方形ABCD中,E为AB的中点,G,F分别为AD、BC边上的点,若AG=1,BF=2,GEF=90,则GF的长为( )A2B3C4D57已知3a2b=1,则代数式56a+4b的值是()A4 B3 C1 D38如图是一个放置在水平桌面的锥形瓶,它的俯视图是()ABCD 9一个多边形的每个内角都等于12

4、0,则这个多边形的边数为( )A4B5C6D710某商品的进价为每件元当售价为每件元时,每星期可卖出件,现需降价处理,为占有市场份额,且经市场调查:每降价元,每星期可多卖出件现在要使利润为元,每件商品应降价( )元A3B2.5C2D5二、填空题(共7小题,每小题3分,满分21分)11已知(x+y)225,(xy)29,则x2+y2_12为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛如图所示,按照这样的规律,摆第n个图,需用火柴棒的根数为_13计算的结果是_.14若关于的一元二次方程无实数根,则一次函数的图象不经过第_象限.15我国自主研发的某型号手机处理器采用10 nm工艺,已知1

5、nm=0.000000001 m,则10 nm用科学记数法可表示为_m16若关于x的函数与x轴仅有一个公共点,则实数k的值为 .17当关于x的一元二次方程ax2+bx+c0有实数根,且其中一个根为另一个根的2倍时,称之为“倍根方程”如果关于x的一元二次方程x2+(m2)x2m0是“倍根方程”,那么m的值为_三、解答题(共7小题,满分69分)18(10分)如图,直线yx+2与反比例函数 (k0)的图象交于A(a,3),B(3,b)两点,过点A作ACx轴于点C,过点B作BDx轴于点D(1)求a,b的值及反比例函数的解析式;(2)若点P在直线yx+2上,且SACPSBDP,请求出此时点P的坐标;(3

6、)在x轴正半轴上是否存在点M,使得MAB为等腰三角形?若存在,请直接写出M点的坐标;若不存在,说明理由19(5分)如图,RtABC中,C=90,A=30,BC=1(1)实践操作:尺规作图,不写作法,保留作图痕迹作ABC的角平分线交AC于点D作线段BD的垂直平分线,交AB于点E,交BC于点F,连接DE、DF(2)推理计算:四边形BFDE的面积为 20(8分)解不等式组,并写出该不等式组的最大整数解21(10分)某海域有A、B两个港口,B港口在A港口北偏西30方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75方向的C处,求:(1)C= ;(2)此时刻

7、船与B港口之间的距离CB的长(结果保留根号)22(10分)某初级中学对毕业班学生三年来参加市级以上各项活动获奖情况进行统计,七年级时有48人次获奖,之后逐年增加,到九年级毕业时累计共有183人次获奖,求这两年中获奖人次的平均年增长率23(12分)如图所示,直线y=2x+b与反比例函数y=交于点A、B,与x轴交于点C(1)若A(3,m)、B(1,n)直接写出不等式2x+b的解(2)求sinOCB的值(3)若CBCA=5,求直线AB的解析式24(14分)如图所示,平行四边形形ABCD中,过对角线BD中点O的直线分别交AB,CD边于点E,F(1)求证:四边形BEDF是平行四边形;(2)请添加一个条件

8、使四边形BEDF为菱形2023学年模拟测试卷参考答案(含详细解析)一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【答案解析】将2098.7亿元用科学记数法表示是2.09871011,故选:C点睛: 本题考查了正整数指数科学计数法,对于一个绝对值较大的数,用科学记数法写成 的形式,其中,n是比原整数位数少1的数.2、A【答案解析】根据菱形的四条边都相等求出AB,再根据菱形的对角线互相平分可得OB=OD,然后判断出OE是ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求解即可【题目详解】解:菱形ABCD的周长为28,AB=284=7,OB=OD,E为AD边中

9、点,OE是ABD的中位线,OE=AB=7=3.1故选:A【答案点睛】本题考查了菱形的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键3、A【答案解析】测试卷分析:首先根据三角形的外角性质得到1+2=4,然后根据平行线的性质得到3=4求解解:根据三角形的外角性质,1+2=4=110,ab,3=4=110,故选A点评:本题考查了平行线的性质以及三角形的外角性质,属于基础题,难度较小4、D【答案解析】先根据三角形的周长公式求出函数关系式,再根据三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出x的取值范围,然后选择即可【题目详解】由题意得,2x+y=1

10、0,所以,y=-2x+10,由三角形的三边关系得,解不等式得,x2.5,解不等式的,x5,所以,不等式组的解集是2.5x5,正确反映y与x之间函数关系的图象是D选项图象故选:D5、C【答案解析】测试卷分析:过点D作DEa,四边形ABCD是矩形,BAD=ADC=90,3=901=9060=30,ab,DEab,4=3=30,2=5,2=9030=60故选C考点:1矩形;2平行线的性质.6、B【答案解析】四边形ABCD是正方形,A=B=90,AGE+AEG=90,BFE+FEB=90,GEF=90,GEA+FEB=90,AGE=FEB,AEG=EFB,AEGBFE,又AE=BE,AE2=AGBF=

11、2,AE=(舍负),GF2=GE2+EF2=AG2+AE2+BE2+BF2=1+2+2+4=9,GF的长为3,故选B.【答案点睛】本题考查了相似三角形的性质的应用,利用勾股定理即可得解,解题的关键是证明AEGBFE7、B【答案解析】先变形,再整体代入,即可求出答案【题目详解】3a2b=1,56a+4b=52(3a2b)=521=3,故选:B【答案点睛】本题考查了求代数式的值,能够整体代入是解此题的关键8、B【答案解析】根据俯视图是从上面看到的图形解答即可.【题目详解】锥形瓶从上面往下看看到的是两个同心圆.故选B.【答案点睛】本题考查三视图的知识,解决此类图的关键是由三视图得到相应的平面图形.从

12、正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.9、C【答案解析】测试卷解析:多边形的每一个内角都等于120,多边形的每一个外角都等于180-120=10,边数n=31010=1故选C考点:多边形内角与外角10、A【答案解析】设售价为x元时,每星期盈利为6125元,那么每件利润为(x-40),原来售价为每件60元时,每星期可卖出300件,所以现在可以卖出300+20(60-x)件,然后根据盈利为6120元即可列出方程解决问题【题目详解】解:设售价为x元时,每星期盈利为6120元,由题意得(x-40)300+20(60-x)=6120

13、,解得:x1=57,x2=1,由已知,要多占市场份额,故销售量要尽量大,即售价要低,故舍去x2=1每件商品应降价60-57=3元故选:A【答案点睛】本题考查了一元二次方程的应用此题找到关键描述语,找到等量关系准确的列出方程是解决问题的关键此题要注意判断所求的解是否符合题意,舍去不合题意的解二、填空题(共7小题,每小题3分,满分21分)11、17【答案解析】先利用完全平方公式展开,然后再求和.【题目详解】根据(x+y)2=25,x2+y2+2xy=25;(xy)2=9, x2+y2-2xy=9,所以x2+y2=17.【答案点睛】(1)完全平方公式:.(2)平方差公式:(a+b)(a-b)=.(3

14、)常用等价变形:,.12、6n+1【答案解析】寻找规律:不难发现,后一个图形比前一个图形多6根火柴棒,即:第1个图形有8根火柴棒,第1个图形有14618根火柴棒,第3个图形有10618根火柴棒,第n个图形有6n+1根火柴棒13、【答案解析】原式= ,故答案为.14、一【答案解析】根据一元二次方程的定义和判别式的意义得到m0且=(-2)2-4m(-1)0,所以m-1,然后根据一次函数的性质判断一次函数y=mx+m的图象所在的象限即可【题目详解】关于x的一元二次方程mx2-2x-1=0无实数根,m0且=(-2)2-4m(-1)0,m-1,一次函数y=mx+m的图象经过第二、三、四象限,不经过第一象

15、限故答案为一【答案点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a0)的根与=b2-4ac有如下关系:当0时,方程有两个不相等的实数根;当=0时,方程有两个相等的实数根;当0时,方程无实数根也考查了一次函数的性质15、1101【答案解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【题目详解】解:10nm用科学记数法可表示为110-1m,故答案为110-1【答案点睛】本题考查用科学记数法表示较小的数,一般形式为a10-n,其中1|a|10,n为由原数左边

16、起第一个不为零的数字前面的0的个数所决定16、0或1。【答案解析】由于没有交待是二次函数,故应分两种情况:当k=0时,函数是一次函数,与x轴仅有一个公共点。当k0时,函数是二次函数,若函数与x轴仅有一个公共点,则有两个相等的实数根,即。综上所述,若关于x的函数与x轴仅有一个公共点,则实数k的值为0或1。17、-1或-4【答案解析】分析: 设“倍根方程”的一个根为,则另一根为,由一元二次方程根与系数的关系可得,由此可列出关于m的方程,解方程即可求得m的值.详解:由题意设“倍根方程”的一个根为,另一根为,则由一元二次方程根与系数的关系可得:,化简整理得:,解得 .故答案为:-1或-4.点睛:本题解

17、题的关键是熟悉一元二次方程根与系数的关系:若一元二次方程的两根分别为,则.三、解答题(共7小题,满分69分)18、(1)y;(2)P(0,2)或(3,5);(3)M(,0)或(,0)【答案解析】(1)利用点在直线上,将点的坐标代入直线解析式中求解即可求出a,b,最后用待定系数法求出反比例函数解析式;(2)设出点P坐标,用三角形的面积公式求出SACP3|n1|,SBDP1|3n|,进而建立方程求解即可得出结论;(3)设出点M坐标,表示出MA2(m1)29,MB2(m3)21,AB232,再三种情况建立方程求解即可得出结论【题目详解】(1)直线yx2与反比例函数y(k0)的图象交于A(a,3),B

18、(3,b)两点,a23,32b,a1,b1,A(1,3),B(3,1),点A(1,3)在反比例函数y上,k133,反比例函数解析式为y; (2)设点P(n,n2),A(1,3),C(1,0),B(3,1),D(3,0),SACPAC|xPxA|3|n1|,SBDPBD|xBxP|1|3n|,SACPSBDP,3|n1|1|3n|,n0或n3,P(0,2)或(3,5);(3)设M(m,0)(m0),A(1,3),B(3,1),MA2(m1)29,MB2(m3)21,AB2(31)2(13)232,MAB是等腰三角形,当MAMB时,(m1)29(m3)21,m0,(舍)当MAAB时,(m1)293

19、2,m1或m1(舍),M(1,0)当MBAB时,(m3)2132,m3或m3(舍),M(3,0)即:满足条件的M(1,0)或(3,0)【答案点睛】此题是反比例函数综合题,主要考查了待定系数法,三角形的面积的求法,等腰三角形的性质,用方程的思想解决问题是解本题的关键19、 (1)详见解析;(2).【答案解析】(1)利用基本作图(作一个角等于已知角和作已知线段的垂直平分线)作出BD和EF;(2)先证明四边形BEDF为菱形,再利用含30度的直角三角形三边的关系求出BF和CD,然后利用菱形的面积公式求解【题目详解】(1)如图,DE、DF为所作;(2)C=90,A=30,ABC=10,AB=2BC=2B

20、D为ABC的角平分线,DBC=EBD=30EF垂直平分BD,FB=FD,EB=ED,FDB=DBC=30,EDB=EBD=30,DEBF,BEDF,四边形BEDF为平行四边形,而FB=FD,四边形BEDF为菱形DFC=FBD+FDB=30+30=10,FDC=9010=30在RtBDC中,BC=1,DBC=30,DC=在RtFCD中,FDC=30,FC=2,FD=2FC=4,BF=FD=4,四边形BFDE的面积=42=8故答案为:8【答案点睛】本题考查了作图基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线

21、)20、2,1,0【答案解析】分析:先解不等式,去括号,移项,系数化为1,再解不等式,取分母,移项,然后找出不等式组的解集本题解析:,解不等式得,x2,解不等式得,x1,不等式组的解集为2x1.不等式组的最大整数解为x=0,21、(1)60;(2)【答案解析】(1)由平行线的性质以及方向角的定义得出FBA=EAB=30,FBC=75,那么ABC=45,又根据方向角的定义得出BAC=BAE+CAE=75,利用三角形内角和定理求出C=60;(2)作ADBC交BC于点D,解RtABD,得出BD=AD=30,解RtACD,得出CD=10,根据BC=BD+CD即可求解.解:(1)如图所示,EAB=30,

22、AEBF,FBA=30,又FBC=75,ABC=45,BAC=BAE+CAE=75,C=60故答案为60; (2)如图,作ADBC于D, 在RtABD中,ABD=45,AB=60,AD=BD=30 在RtACD中,C=60,AD=30,tanC=,CD=10, BC=BD+CD=30+10答:该船与B港口之间的距离CB的长为(30+10)海里 22、25%【答案解析】首先设这两年中获奖人次的平均年增长率为x,则可得八年级的获奖人数为48(1+x),九年级的获奖人数为48(1+x)2;故根据题意可得48(1+x)2=183,即可求得x的值,即可求解本题.【题目详解】设这两年中获奖人次的平均年增长率为x,根据题意得:48+48(1+x)+48(1+x)2=183,解得:x1=25%,x2=(不符合题意,舍去)答:这两年中获奖人次的年平均年增长率为2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论